{"title":"A general integral","authors":"R. Estrada, J. Vindas","doi":"10.4064/dm483-0-1","DOIUrl":null,"url":null,"abstract":"We define an integral, the distributional integral of functions of one real variable, that is more general than the Lebesgue and the Denjoy-Perron-Henstock Kurzweil integrals, and which allows the integration of functions with distributional values everywhere or nearly everywhere. \nOur integral has the property that if f is locally distributionally integrable over the real line and psi is an element of D(R) is a test function, then f psi is distributionally integrable, and the formula = (dist)integral(infinity)(-infinity) f(x)psi(x)dx, \ndefines a distribution f is an element of D'(R) that has distributional point values almost everywhere and actually f(x) = f(x) almost everywhere. \nThe indefinite distributional integral F(x) = (dist) integral(x)(a) f(t)dt corresponds to a distribution with point values everywhere and whose distributional derivative has point values almost everywhere equal to f (x). \nThe distributional integral is more general than the standard integrals, but it still has many of the useful properties of those standard ones, including integration by parts formulas, substitution formulas, even for infinite intervals (in the Cesaro sense), mean value theorems, and convergence theorems. The distributional integral satisfies a version of Hake's theorem. Unlike general distributions, locally distributionally integrable functions can be restricted to closed sets and can be multiplied by power functions with real positive exponents.","PeriodicalId":51016,"journal":{"name":"Dissertationes Mathematicae","volume":"483 1","pages":"1-49"},"PeriodicalIF":1.5000,"publicationDate":"2011-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Dissertationes Mathematicae","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4064/dm483-0-1","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 5
Abstract
We define an integral, the distributional integral of functions of one real variable, that is more general than the Lebesgue and the Denjoy-Perron-Henstock Kurzweil integrals, and which allows the integration of functions with distributional values everywhere or nearly everywhere.
Our integral has the property that if f is locally distributionally integrable over the real line and psi is an element of D(R) is a test function, then f psi is distributionally integrable, and the formula = (dist)integral(infinity)(-infinity) f(x)psi(x)dx,
defines a distribution f is an element of D'(R) that has distributional point values almost everywhere and actually f(x) = f(x) almost everywhere.
The indefinite distributional integral F(x) = (dist) integral(x)(a) f(t)dt corresponds to a distribution with point values everywhere and whose distributional derivative has point values almost everywhere equal to f (x).
The distributional integral is more general than the standard integrals, but it still has many of the useful properties of those standard ones, including integration by parts formulas, substitution formulas, even for infinite intervals (in the Cesaro sense), mean value theorems, and convergence theorems. The distributional integral satisfies a version of Hake's theorem. Unlike general distributions, locally distributionally integrable functions can be restricted to closed sets and can be multiplied by power functions with real positive exponents.
期刊介绍:
DISSERTATIONES MATHEMATICAE publishes long research papers (preferably 50-100 pages) in any area of mathematics. An important feature of papers accepted for publication should be their utility for a broad readership of specialists in the domain. In particular, the papers should be to some reasonable extent self-contained. The paper version is considered as primary.
The following criteria are taken into account in the reviewing procedure: correctness, mathematical level, mathematical novelty, utility for a broad readership of specialists in the domain, language and editorial aspects. The Editors have adopted appropriate procedures to avoid ghostwriting and guest authorship.