{"title":"Unitary equivalence and decompositions of finite systems of closed densely defined operators in Hilbert spaces","authors":"Piotr Niemiec","doi":"10.4064/dm482-0-1","DOIUrl":null,"url":null,"abstract":"An \\textit{ideal} of $N$-tuples of operators is a class invariant with respect to unitary equivalence which contains direct sums of arbitrary collections of its members as well as their (reduced) parts. New decomposition theorems (with respect to ideals) for $N$-tuples of closed densely defined linear operators acting in a common (arbitrary) Hilbert space are presented. Algebraic and order (with respect to containment) properties of the class $CDD_N$ of all unitary equivalence classes of such $N$-tuples are established and certain ideals in $CDD_N$ are distinguished. It is proved that infinite operations in $CDD_N$ may be reconstructed from the direct sum operation of a pair. \\textit{Prime decomposition} in $CDD_N$ is proposed and its (in a sense) uniqueness is established. The issue of classification of ideals in $CDD_N$ (up to isomorphism) is discussed. A model for $CDD_N$ is described and its concrete realization is presented. A new partial order of $N$-tuples of operators is introduced and its fundamental properties are established. Extremal importance of unitary disjointness of $N$-tuples and the way how it `tidies up' the structure of $CDD_N$ are emphasized.","PeriodicalId":51016,"journal":{"name":"Dissertationes Mathematicae","volume":"482 1","pages":"1-106"},"PeriodicalIF":1.5000,"publicationDate":"2011-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Dissertationes Mathematicae","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4064/dm482-0-1","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 8
Abstract
An \textit{ideal} of $N$-tuples of operators is a class invariant with respect to unitary equivalence which contains direct sums of arbitrary collections of its members as well as their (reduced) parts. New decomposition theorems (with respect to ideals) for $N$-tuples of closed densely defined linear operators acting in a common (arbitrary) Hilbert space are presented. Algebraic and order (with respect to containment) properties of the class $CDD_N$ of all unitary equivalence classes of such $N$-tuples are established and certain ideals in $CDD_N$ are distinguished. It is proved that infinite operations in $CDD_N$ may be reconstructed from the direct sum operation of a pair. \textit{Prime decomposition} in $CDD_N$ is proposed and its (in a sense) uniqueness is established. The issue of classification of ideals in $CDD_N$ (up to isomorphism) is discussed. A model for $CDD_N$ is described and its concrete realization is presented. A new partial order of $N$-tuples of operators is introduced and its fundamental properties are established. Extremal importance of unitary disjointness of $N$-tuples and the way how it `tidies up' the structure of $CDD_N$ are emphasized.
期刊介绍:
DISSERTATIONES MATHEMATICAE publishes long research papers (preferably 50-100 pages) in any area of mathematics. An important feature of papers accepted for publication should be their utility for a broad readership of specialists in the domain. In particular, the papers should be to some reasonable extent self-contained. The paper version is considered as primary.
The following criteria are taken into account in the reviewing procedure: correctness, mathematical level, mathematical novelty, utility for a broad readership of specialists in the domain, language and editorial aspects. The Editors have adopted appropriate procedures to avoid ghostwriting and guest authorship.