{"title":"Weighted inequalities for gradients on non-smooth domains","authors":"C. Sweezy, J. Wilson","doi":"10.4064/DM471-0-1","DOIUrl":null,"url":null,"abstract":"We prove weighted norm inequalities of integral type between the gradients of solutions u of elliptic equations and their boundary data f on bounded Lipschitz domains. 0. Introduction. We are interested in the following general question: To what extent is the interior smoothness of the solution of a PDE controlled by the size of its boundary values? To be more specific, suppose (for now) that Ω ⊂ R is a nice domain, μ is a positive measure supported in Ω, and v is a non-negative measurable function defined on ∂Ω. If f : ∂Ω → R is reasonable (say, continuous function with compact support), we let u : Ω → R be the solution of the classical Dirichlet problem with boundary values equal to f . (We are implicitly assuming that Ω is nice enough to have this make sense!) Let p and q be real numbers lying strictly between 1 and infinity. When is it the case that (∫ Ω |∇u|q dμ )1/q ≤ (∫","PeriodicalId":51016,"journal":{"name":"Dissertationes Mathematicae","volume":"471 1","pages":"1-53"},"PeriodicalIF":1.5000,"publicationDate":"2010-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Dissertationes Mathematicae","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4064/DM471-0-1","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1
Abstract
We prove weighted norm inequalities of integral type between the gradients of solutions u of elliptic equations and their boundary data f on bounded Lipschitz domains. 0. Introduction. We are interested in the following general question: To what extent is the interior smoothness of the solution of a PDE controlled by the size of its boundary values? To be more specific, suppose (for now) that Ω ⊂ R is a nice domain, μ is a positive measure supported in Ω, and v is a non-negative measurable function defined on ∂Ω. If f : ∂Ω → R is reasonable (say, continuous function with compact support), we let u : Ω → R be the solution of the classical Dirichlet problem with boundary values equal to f . (We are implicitly assuming that Ω is nice enough to have this make sense!) Let p and q be real numbers lying strictly between 1 and infinity. When is it the case that (∫ Ω |∇u|q dμ )1/q ≤ (∫
期刊介绍:
DISSERTATIONES MATHEMATICAE publishes long research papers (preferably 50-100 pages) in any area of mathematics. An important feature of papers accepted for publication should be their utility for a broad readership of specialists in the domain. In particular, the papers should be to some reasonable extent self-contained. The paper version is considered as primary.
The following criteria are taken into account in the reviewing procedure: correctness, mathematical level, mathematical novelty, utility for a broad readership of specialists in the domain, language and editorial aspects. The Editors have adopted appropriate procedures to avoid ghostwriting and guest authorship.