{"title":"Complex absorbing potential method for systems","authors":"J. Kungsman, M. Melgaard","doi":"10.4064/DM469-0-1","DOIUrl":null,"url":null,"abstract":"The Complex Absorbing Potential (CAP) method is widely used to compute resonances in Quantum Chemistry, both for scalar valued and matrix valued Hamiltonians. In the semiclassical limit h → 0 we consider resonances near the real axis and we establish the CAP method rigorously in an abstract matrix valued setting by proving that resonances are perturbed eigenvalues of the nonselfadjoint CAP Hamiltonian, and vice versa. The proof is based on pseudodifferential operator theory and microlocal analysis.","PeriodicalId":51016,"journal":{"name":"Dissertationes Mathematicae","volume":"469 1","pages":"1-58"},"PeriodicalIF":1.5000,"publicationDate":"2010-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Dissertationes Mathematicae","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4064/DM469-0-1","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 4
Abstract
The Complex Absorbing Potential (CAP) method is widely used to compute resonances in Quantum Chemistry, both for scalar valued and matrix valued Hamiltonians. In the semiclassical limit h → 0 we consider resonances near the real axis and we establish the CAP method rigorously in an abstract matrix valued setting by proving that resonances are perturbed eigenvalues of the nonselfadjoint CAP Hamiltonian, and vice versa. The proof is based on pseudodifferential operator theory and microlocal analysis.
期刊介绍:
DISSERTATIONES MATHEMATICAE publishes long research papers (preferably 50-100 pages) in any area of mathematics. An important feature of papers accepted for publication should be their utility for a broad readership of specialists in the domain. In particular, the papers should be to some reasonable extent self-contained. The paper version is considered as primary.
The following criteria are taken into account in the reviewing procedure: correctness, mathematical level, mathematical novelty, utility for a broad readership of specialists in the domain, language and editorial aspects. The Editors have adopted appropriate procedures to avoid ghostwriting and guest authorship.