Consecutive neighbour spacings between the prime divisors of an integer

IF 0.4 4区 数学 Q4 MATHEMATICS
J. De Koninck, I. Kátai
{"title":"Consecutive neighbour spacings\nbetween the prime divisors of an integer","authors":"J. De Koninck, I. Kátai","doi":"10.4064/cm8745-2-2022","DOIUrl":null,"url":null,"abstract":". Writing p 1 ( n ) < · · · < p r ( n ) for the distinct prime divisors of a given integer n ≥ 2 and letting, for a fixed λ ∈ (0 , 1] , U λ ( n ) := # { j ∈ { 1 , . . . , r − 1 } : log p j ( n ) / log p j +1 ( n ) < λ } , we recently proved that U λ ( n ) /r ∼ λ for almost all integers n ≥ 2 . Now, given λ ∈ (0 , 1) and p ∈ ℘ , the set of prime numbers, let B λ ( p ) := { q ∈ ℘ : λ < log q log p < 1 /λ } and consider the arithmetic function u λ ( n ) := # { p | n : ( n/p, B λ ( p )) = 1 } . Here, we prove that (cid:80) n ≤ x ( u λ ( n ) − λ 2 log log n ) 2 = ( C + o (1)) x log log x as x → ∞ , where C is a positive constant which depends only on λ , and thereafter we consider the case of shifted primes. Finally, we study a new function V ( n ) which counts the number of divisors of n with large neighbour spacings and establish the mean value of V ( n ) and of V 2 ( n ) .","PeriodicalId":49216,"journal":{"name":"Colloquium Mathematicum","volume":null,"pages":null},"PeriodicalIF":0.4000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Colloquium Mathematicum","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4064/cm8745-2-2022","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

Abstract

. Writing p 1 ( n ) < · · · < p r ( n ) for the distinct prime divisors of a given integer n ≥ 2 and letting, for a fixed λ ∈ (0 , 1] , U λ ( n ) := # { j ∈ { 1 , . . . , r − 1 } : log p j ( n ) / log p j +1 ( n ) < λ } , we recently proved that U λ ( n ) /r ∼ λ for almost all integers n ≥ 2 . Now, given λ ∈ (0 , 1) and p ∈ ℘ , the set of prime numbers, let B λ ( p ) := { q ∈ ℘ : λ < log q log p < 1 /λ } and consider the arithmetic function u λ ( n ) := # { p | n : ( n/p, B λ ( p )) = 1 } . Here, we prove that (cid:80) n ≤ x ( u λ ( n ) − λ 2 log log n ) 2 = ( C + o (1)) x log log x as x → ∞ , where C is a positive constant which depends only on λ , and thereafter we consider the case of shifted primes. Finally, we study a new function V ( n ) which counts the number of divisors of n with large neighbour spacings and establish the mean value of V ( n ) and of V 2 ( n ) .
整数质因数之间的连续邻接间隔
. 写作p 1 (n ) < · · · < p r (n)为《a distinct prime divisors赐予整数n≥2和放,for a固定λ∈(0,1),Uλ(n ) := # { j∈{1,。。j p, r−1}日志:p (n) / log j + 1 (n)的<λ,我们最近proved that Uλ(n) - r∼λ为几乎所有integers n≥2。现在,赐予λ∈p(0, 1)和∈℘素数之设置,让Bλ(p): q ={∈℘:λ< q p < 1 /λ的日志和日志认为《arithmetic功能uλ(n ) := # { p | n: p (n -, B型λ(p) = 1}。这里,我们证明那cid: 80) n≤x (uλ(n)−λ2 log log n) = (C + o(1)美国对数log x x x→∞,哪里只有C是一个积极、康斯坦哪种depends onλ,我们和thereafter认为《shifted凯斯质数。最后,我们研究了一个新的功能V (n),这包括了V (n)和V (n)值的数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.90
自引率
0.00%
发文量
61
审稿时长
6-12 weeks
期刊介绍: Colloquium Mathematicum is a journal devoted to the publication of original papers of moderate length addressed to a broad mathematical audience. It publishes results of original research, interesting new proofs of important theorems and research-expository papers in all fields of pure mathematics. Two issues constitute a volume, and at least four volumes are published each year.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信