Adaptive Detection of a Moving Target Undergoing Illumination Changes against a Dynamic Background

Q Physics and Astronomy
M. Lu, Yang Gao, Ming Zhu
{"title":"Adaptive Detection of a Moving Target Undergoing Illumination Changes against a Dynamic Background","authors":"M. Lu, Yang Gao, Ming Zhu","doi":"10.3807/JOSK.2016.20.6.745","DOIUrl":null,"url":null,"abstract":"A detection algorithm, based on the combined local-global (CLG) optical-flow model and Gaussian pyramid for a moving target appearing against a dynamic background, can compensate for the inadaptability of the classic Horn–Schunck algorithm to illumination changes and reduce the number of needed calculations. Incorporating the hypothesis of gradient conservation into the traditional CLG optical-flow model and combining structure and texture decomposition enable this algorithm to minimize the impact of illumination changes on optical-flow estimates. Further, calculating optical-flow with the Gaussian pyramid by layers and computing optical-flow at other points using an optical-flow iterative with higher gray-level points together reduce the number of calculations required to improve detection efficiency. Finally, this proposed method achieves the detection of a moving target against a dynamic background, according to the background motion vector determined by the displacement and magnitude of the optical-flow. Simulation results indicate that this algorithm, in comparison to the traditional Horn-Schunck optical-flow algorithm, accurately detects a moving target undergoing illumination changes against a dynamic background and simultaneously demonstrates a significant reduction in the number of computations needed to improve detection efficiency.","PeriodicalId":49986,"journal":{"name":"Journal of the Optical Society of Korea","volume":"20 1","pages":"745-751"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Optical Society of Korea","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3807/JOSK.2016.20.6.745","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 1

Abstract

A detection algorithm, based on the combined local-global (CLG) optical-flow model and Gaussian pyramid for a moving target appearing against a dynamic background, can compensate for the inadaptability of the classic Horn–Schunck algorithm to illumination changes and reduce the number of needed calculations. Incorporating the hypothesis of gradient conservation into the traditional CLG optical-flow model and combining structure and texture decomposition enable this algorithm to minimize the impact of illumination changes on optical-flow estimates. Further, calculating optical-flow with the Gaussian pyramid by layers and computing optical-flow at other points using an optical-flow iterative with higher gray-level points together reduce the number of calculations required to improve detection efficiency. Finally, this proposed method achieves the detection of a moving target against a dynamic background, according to the background motion vector determined by the displacement and magnitude of the optical-flow. Simulation results indicate that this algorithm, in comparison to the traditional Horn-Schunck optical-flow algorithm, accurately detects a moving target undergoing illumination changes against a dynamic background and simultaneously demonstrates a significant reduction in the number of computations needed to improve detection efficiency.
动态背景下光照变化运动目标的自适应检测
针对动态背景下出现的运动目标,基于局部-全局(CLG)光流模型和高斯金字塔相结合的检测算法,弥补了经典的Horn-Schunck算法对光照变化的不适应性,减少了计算量。该算法在传统的CLG光流模型中引入梯度守恒假设,结合结构和纹理分解,使光照变化对光流估计的影响最小化。此外,利用高斯金字塔分层计算光流,并利用具有较高灰度点的光流迭代计算其他点的光流,共同减少了提高检测效率所需的计算次数。最后,根据光流的位移和大小确定的背景运动矢量,实现了动态背景下运动目标的检测。仿真结果表明,与传统的Horn-Schunck光流算法相比,该算法能够在动态背景下准确地检测出光照变化的运动目标,同时显著减少了提高检测效率所需的计算量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.70
自引率
0.00%
发文量
0
审稿时长
2.3 months
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信