Haiping Zhang, J. Pilgram, Carmen G. Constantin, L. Rovige, P. Heuer, S. Ghazaryan, M. Kaloyan, R. Dorst, Derek Schaeffer, Christoph Niemann
{"title":"Two-Dimensional Thomson Scattering in Laser-Produced Plasmas","authors":"Haiping Zhang, J. Pilgram, Carmen G. Constantin, L. Rovige, P. Heuer, S. Ghazaryan, M. Kaloyan, R. Dorst, Derek Schaeffer, Christoph Niemann","doi":"10.3390/instruments7030025","DOIUrl":null,"url":null,"abstract":"We present two-dimensional (2D) optical Thomson scattering measurements of electron density and temperature in laser-produced plasmas. The novel instrument directly measures ne(x,y) and Te(x,y) in two dimensions over large spatial regions (cm2) with sub-mm spatial resolution, by automatically translating the scattering volume while the plasma is produced repeatedly by irradiating a solid target with a high-repetition-rate laser beam (10 J, ∼1012 W/cm2, 1 Hz). In this paper, we describe the design and motorized auto-alignment of the instrument and the computerized algorithm that autonomously fits the spectral distribution function to the tens-of-thousands of measured scattering spectra, and captures the transition from the collective to the non-collective regime with distance from the target. As an example, we present the first 2D scattering measurements in laser-driven shock waves in ambient nitrogen gas at a pressure of 0.13 mbar.","PeriodicalId":13582,"journal":{"name":"Instruments","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Instruments","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/instruments7030025","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0
Abstract
We present two-dimensional (2D) optical Thomson scattering measurements of electron density and temperature in laser-produced plasmas. The novel instrument directly measures ne(x,y) and Te(x,y) in two dimensions over large spatial regions (cm2) with sub-mm spatial resolution, by automatically translating the scattering volume while the plasma is produced repeatedly by irradiating a solid target with a high-repetition-rate laser beam (10 J, ∼1012 W/cm2, 1 Hz). In this paper, we describe the design and motorized auto-alignment of the instrument and the computerized algorithm that autonomously fits the spectral distribution function to the tens-of-thousands of measured scattering spectra, and captures the transition from the collective to the non-collective regime with distance from the target. As an example, we present the first 2D scattering measurements in laser-driven shock waves in ambient nitrogen gas at a pressure of 0.13 mbar.