{"title":"Non-static surfaces in MCNPX: The chopper extension1","authors":"K. Grammer, F. Gallmeier, E. Iverson","doi":"10.3233/jnr-200148","DOIUrl":null,"url":null,"abstract":"Rotating objects, such as choppers, are common components of a neutron beamline, and the motion of these components is not described in the static geometry of an MCNPX model. The special case of non-static surfaces for rotation about a stationary point in space has been developed for MCNPX. In addition, velocity dependent kinematics due to the motion of the medium have been implemented. This implementation allows for the simulation of rotating objects at speeds comparable to the velocity of cold neutrons. Applications of the chopper extension will be discussed, including the direct simulation of a bandwidth chopper system, the thermalization of neutrons inside a spinning material, and the discussion of the implementation of a spinning single crystal.","PeriodicalId":44708,"journal":{"name":"Journal of Neutron Research","volume":"22 1","pages":"191-198"},"PeriodicalIF":1.0000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.3233/jnr-200148","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Neutron Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/jnr-200148","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NUCLEAR SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Rotating objects, such as choppers, are common components of a neutron beamline, and the motion of these components is not described in the static geometry of an MCNPX model. The special case of non-static surfaces for rotation about a stationary point in space has been developed for MCNPX. In addition, velocity dependent kinematics due to the motion of the medium have been implemented. This implementation allows for the simulation of rotating objects at speeds comparable to the velocity of cold neutrons. Applications of the chopper extension will be discussed, including the direct simulation of a bandwidth chopper system, the thermalization of neutrons inside a spinning material, and the discussion of the implementation of a spinning single crystal.