Elastic plate under low velocity impact: Classical continuum mechanics vs peridynamics analysis

IF 1.4 Q4 MATERIALS SCIENCE, MULTIDISCIPLINARY
H. Altenbach, O. Larin, K. Naumenko, O. Sukhanova, M. Würkner
{"title":"Elastic plate under low velocity impact: Classical continuum mechanics vs peridynamics analysis","authors":"H. Altenbach, O. Larin, K. Naumenko, O. Sukhanova, M. Würkner","doi":"10.3934/matersci.2022043","DOIUrl":null,"url":null,"abstract":"The aim of this paper is to compare the classical continuum mechanics and the peridynamic models in the structural analysis of a monolithic glass plate subjected to ball drop. Governing equations are recalled in order to highlight the differences and basic features of both approaches. In this study the behavior of glass is assumed to be linear-elastic and damage processes are ignored. The generalized Hooke's law is assumed within the classical theory, while the linear peridynamic solid constitutive model is applied within the peridynamic analysis. Mechanical models for the ball drop simulation are discussed in detail. An emphasis is placed on the discretization including finite element mesh, peridynamic node lattice and time stepping, as well as appropriate constraints and contact conditions in both finite element and non-local peridynamics models. Deflections of the plate after the ball drop are presented as functions of time and the results based on the finite element and peridynamic analysis are compared. Good agreements between the deflection values in selected points of the plate as well as deflection fields at several time points indicate, that the model assumptions for the non-local peridynamic analysis including the horizon size, the short-range force contact settings and the support conditions are well suited. The developed peridynamics models can be applied in the future to analyze damage patterns in glass plates.","PeriodicalId":7670,"journal":{"name":"AIMS Materials Science","volume":"1 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AIMS Materials Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/matersci.2022043","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The aim of this paper is to compare the classical continuum mechanics and the peridynamic models in the structural analysis of a monolithic glass plate subjected to ball drop. Governing equations are recalled in order to highlight the differences and basic features of both approaches. In this study the behavior of glass is assumed to be linear-elastic and damage processes are ignored. The generalized Hooke's law is assumed within the classical theory, while the linear peridynamic solid constitutive model is applied within the peridynamic analysis. Mechanical models for the ball drop simulation are discussed in detail. An emphasis is placed on the discretization including finite element mesh, peridynamic node lattice and time stepping, as well as appropriate constraints and contact conditions in both finite element and non-local peridynamics models. Deflections of the plate after the ball drop are presented as functions of time and the results based on the finite element and peridynamic analysis are compared. Good agreements between the deflection values in selected points of the plate as well as deflection fields at several time points indicate, that the model assumptions for the non-local peridynamic analysis including the horizon size, the short-range force contact settings and the support conditions are well suited. The developed peridynamics models can be applied in the future to analyze damage patterns in glass plates.
低速冲击下的弹性板:经典连续介质力学与周动力学分析
本文的目的是比较经典连续介质力学模型和周动力模型在球落作用下整体玻璃板结构分析中的应用。为了突出这两种方法的区别和基本特征,我们回顾了控制方程。在这项研究中,假定玻璃的行为是线弹性的,并且忽略了损伤过程。在经典理论中采用广义胡克定律,在动力学分析中采用线性固体本构模型。详细讨论了球落模拟的力学模型。重点介绍了有限元网格、周动力学节点点阵和时间步进等离散化方法,以及有限元模型和非局部周动力学模型中适当的约束和接触条件。给出了球落后板的挠度随时间变化的函数,并对基于有限元和周动力分析的结果进行了比较。板的选定点的挠度值和几个时间点的挠度场之间的良好一致性表明,模型对非局部周动力分析的假设包括水平尺寸、近距离力接触设置和支撑条件是很合适的。所建立的周动力模型可用于分析玻璃板的损伤模式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
AIMS Materials Science
AIMS Materials Science MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
3.60
自引率
0.00%
发文量
33
审稿时长
4 weeks
期刊介绍: AIMS Materials Science welcomes, but not limited to, the papers from the following topics: · Biological materials · Ceramics · Composite materials · Magnetic materials · Medical implant materials · New properties of materials · Nanoscience and nanotechnology · Polymers · Thin films.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信