On Λ-Fractional peridynamic mechanics

IF 1.4 Q4 MATERIALS SCIENCE, MULTIDISCIPLINARY
K. A. Lazopoulos, E. Sideridis, A. Lazopoulos
{"title":"On Λ-Fractional peridynamic mechanics","authors":"K. A. Lazopoulos, E. Sideridis, A. Lazopoulos","doi":"10.3934/matersci.2022042","DOIUrl":null,"url":null,"abstract":"Λ-Fractional Mechanics has already been introduced since it combines non-locality with mathematical analysis. It is well established, that conventional mechanics is not a proper theory for describing various phenomena in micro or nanomechanics. Further, various experiments in viscoelasticity, fatigue, fracture, etc., suggest the introduction of non-local mathematical analysis in their description. Fractional calculus has been used in describing those phenomena. Nevertheless, the well-known fractional derivatives with their calculus fail to generate differential geometry, since the established fractional derivatives do not fulfill the prerequisites of differential topology. A Λ-fractional analysis can generate geometry conforming to the prerequisites of differential topology. Hence Λ-fractional mechanics deals with non-local mechanics, describing the various inhomogeneities in various materials with more realistic rules.","PeriodicalId":7670,"journal":{"name":"AIMS Materials Science","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AIMS Materials Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/matersci.2022042","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Λ-Fractional Mechanics has already been introduced since it combines non-locality with mathematical analysis. It is well established, that conventional mechanics is not a proper theory for describing various phenomena in micro or nanomechanics. Further, various experiments in viscoelasticity, fatigue, fracture, etc., suggest the introduction of non-local mathematical analysis in their description. Fractional calculus has been used in describing those phenomena. Nevertheless, the well-known fractional derivatives with their calculus fail to generate differential geometry, since the established fractional derivatives do not fulfill the prerequisites of differential topology. A Λ-fractional analysis can generate geometry conforming to the prerequisites of differential topology. Hence Λ-fractional mechanics deals with non-local mechanics, describing the various inhomogeneities in various materials with more realistic rules.
关于Λ-Fractional动态力学
Λ-Fractional力学已经被引入,因为它结合了非定域性和数学分析。众所周知,传统力学并不能很好地描述微纳米力学中的各种现象。此外,粘弹性、疲劳、断裂等方面的各种实验建议在其描述中引入非局部数学分析。分数阶微积分被用来描述这些现象。然而,众所周知的分数阶导数及其微积分无法生成微分几何,因为已建立的分数阶导数不满足微分拓扑的先决条件。Λ-fractional分析可以生成符合微分拓扑先决条件的几何形状。因此Λ-fractional力学处理非局部力学,用更现实的规则描述各种材料中的各种不均匀性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
AIMS Materials Science
AIMS Materials Science MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
3.60
自引率
0.00%
发文量
33
审稿时长
4 weeks
期刊介绍: AIMS Materials Science welcomes, but not limited to, the papers from the following topics: · Biological materials · Ceramics · Composite materials · Magnetic materials · Medical implant materials · New properties of materials · Nanoscience and nanotechnology · Polymers · Thin films.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信