M. Ozdemir, S. Oterkus, E. Oterkus, I. Amin, A. El-Aassar, H. Shawky
{"title":"Mechanical analyses of flat sheet water treatment membranes","authors":"M. Ozdemir, S. Oterkus, E. Oterkus, I. Amin, A. El-Aassar, H. Shawky","doi":"10.3934/matersci.2022052","DOIUrl":null,"url":null,"abstract":"In this work, we address the mechanical response of the flat sheet polymeric water treatment membranes under the assumed operational loading conditions. Firstly, we perform quasi-static analyses of the membranes under normal pressure loads, which is the condition that resembles the actual loading for flat sheet membranes in the submerged membrane bioreactors. Then, the long-term deformation of the membranes is studied under the assumed filtration durations for the same loading conditions by utilizing the viscoelastic material models. The quasi-static and viscoelastic membrane simulations are performed by a commercial finite element code ANSYS. Finally, the mechanical fatigue life predictions are carried out based on the stress distributions from the quasi-static analyses and the long-term effects from the viscoelastic analyses.","PeriodicalId":7670,"journal":{"name":"AIMS Materials Science","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AIMS Materials Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/matersci.2022052","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
In this work, we address the mechanical response of the flat sheet polymeric water treatment membranes under the assumed operational loading conditions. Firstly, we perform quasi-static analyses of the membranes under normal pressure loads, which is the condition that resembles the actual loading for flat sheet membranes in the submerged membrane bioreactors. Then, the long-term deformation of the membranes is studied under the assumed filtration durations for the same loading conditions by utilizing the viscoelastic material models. The quasi-static and viscoelastic membrane simulations are performed by a commercial finite element code ANSYS. Finally, the mechanical fatigue life predictions are carried out based on the stress distributions from the quasi-static analyses and the long-term effects from the viscoelastic analyses.
期刊介绍:
AIMS Materials Science welcomes, but not limited to, the papers from the following topics: · Biological materials · Ceramics · Composite materials · Magnetic materials · Medical implant materials · New properties of materials · Nanoscience and nanotechnology · Polymers · Thin films.