Effect of thickness on photovoltaic properties of amorphous carbon/fullerene junction

IF 1.4 Q4 MATERIALS SCIENCE, MULTIDISCIPLINARY
Takuto Eguchi, S. Kato, N. Kishi, T. Soga
{"title":"Effect of thickness on photovoltaic properties of amorphous carbon/fullerene junction","authors":"Takuto Eguchi, S. Kato, N. Kishi, T. Soga","doi":"10.3934/matersci.2022026","DOIUrl":null,"url":null,"abstract":"All-carbon photovoltaic devices have attracted attention in terms of resources and environment. However, the device application is very limited because of poor performance. In this work, we studied the solar cell characteristics of amorphous carbon (a–C)/fullerene (C60) junction when the thickness of the a–C layer was varied. When the thickness of the a–C layer was varied, the short-circuit current density and open-circuit voltage increased with increasing film thickness and then decreased after a certain value. Also, the spectral response measurement results suggest that most of the power generation is due to the light absorbed by the C60 layer, and that the light absorbed by the a–C layer may contribute little to power generation. This study suggests that the improvement in the electronic properties of a–C is necessary to make a photovoltaic device with high performance.","PeriodicalId":7670,"journal":{"name":"AIMS Materials Science","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AIMS Materials Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/matersci.2022026","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

All-carbon photovoltaic devices have attracted attention in terms of resources and environment. However, the device application is very limited because of poor performance. In this work, we studied the solar cell characteristics of amorphous carbon (a–C)/fullerene (C60) junction when the thickness of the a–C layer was varied. When the thickness of the a–C layer was varied, the short-circuit current density and open-circuit voltage increased with increasing film thickness and then decreased after a certain value. Also, the spectral response measurement results suggest that most of the power generation is due to the light absorbed by the C60 layer, and that the light absorbed by the a–C layer may contribute little to power generation. This study suggests that the improvement in the electronic properties of a–C is necessary to make a photovoltaic device with high performance.
厚度对非晶碳/富勒烯结光电性能的影响
全碳光伏器件在资源和环境方面备受关注。然而,由于性能不佳,该器件的应用非常有限。在本工作中,我们研究了非晶碳(a-C)/富勒烯(C60)结在a-C层厚度变化时的太阳能电池特性。改变a -c层厚度时,短路电流密度和开路电压随膜厚度的增加而增大,达到一定厚度后减小。此外,光谱响应测量结果表明,大部分的发电是由于C60层吸收的光,而a-C层吸收的光对发电的贡献可能很小。本研究表明,提高a - c的电子性能是制造高性能光伏器件的必要条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
AIMS Materials Science
AIMS Materials Science MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
3.60
自引率
0.00%
发文量
33
审稿时长
4 weeks
期刊介绍: AIMS Materials Science welcomes, but not limited to, the papers from the following topics: · Biological materials · Ceramics · Composite materials · Magnetic materials · Medical implant materials · New properties of materials · Nanoscience and nanotechnology · Polymers · Thin films.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信