Integrated Sensing Systems for Monitoring Interrelated Physiological Parameters in Young and Aged Adults

IF 1.4 Q2 ENGINEERING, MULTIDISCIPLINARY
Mark Sprowls, Michael Serhan, En-Fan Chou, Lancy Lin, Christopher W. Frames, I. Kucherenko, Keyvan Mollaeian, Yang Li, V. Jammula, D. Logeswaran, M. Khine, Yezhou Yang, T. Lockhart, J. Claussen, Liang Dong, Julian J‐L Chen, Juan-Qing Ren, Carmen Gomes, Daejin Kim, Teresa Wu, J. Margrett, Balaji Narasimhan, E. Forzani
{"title":"Integrated Sensing Systems for Monitoring Interrelated Physiological Parameters in Young and Aged Adults","authors":"Mark Sprowls, Michael Serhan, En-Fan Chou, Lancy Lin, Christopher W. Frames, I. Kucherenko, Keyvan Mollaeian, Yang Li, V. Jammula, D. Logeswaran, M. Khine, Yezhou Yang, T. Lockhart, J. Claussen, Liang Dong, Julian J‐L Chen, Juan-Qing Ren, Carmen Gomes, Daejin Kim, Teresa Wu, J. Margrett, Balaji Narasimhan, E. Forzani","doi":"10.36001/ijphm.2021.v12i4.2914","DOIUrl":null,"url":null,"abstract":"Acute injury to aged individuals represents a significant challenge to the global healthcare community as these injuries are frequently treated in a reactive method due to the infeasibility of frequent visits to the hospital for biometric monitoring. However, there is potential to prevent a large number of these cases through passive, at-home monitoring of multiple physiological parameters related to various causes that are common to aged adults in general. This research strives to implement wearable devices, ambient “smart home” devices, and minimally invasive blood and urine analysis to test the feasibility of implementation of a multitude of research-level (i.e. not yet clinically validated) methods simultaneously in a “smart system”. The system comprises measures of balance, breathing, heart rate, metabolic rate, joint flexibility, hydration, and physical performance functions in addition to lab testing related to biological aging and mechanical cell strength. A proof-of-concept test is illustrated for two adult males of different ages: a 22-year-old and a 73-year-old matched in body mass index (BMI). The integrated system is test in this work, a pilot study, demonstrating functionality and age-related clinical relevance. The two subjects had physiological measurements taken in several settings during the pilot study: seated, biking, and lying down. Balance measurements indicated changes in sway area of 45.45% and 25.44%, respectively for before/after biking. The 22-year-old and the 73-year-old saw heart rate variabilities of 0.11 and 0.02 seconds at resting conditions, and metabolic rate changes of 277.38% and 222.23%, respectively, in comparison between the biking and seated conditions. A smart camera was used to assess biking speed and the 22- and 73-year-old subjects biked at 60 rpm and 28.5 rpm, respectively. The 22-year-old subject saw a 7 times greater electrical resistance change using a joint flexibility sensor inside of their index finger in comparison with the 73-year-old male. The 22 and 73-year-old males saw respective 28% and 48% increases in their urine ammonium concentration before/after the experiment. The average lengths of the telomere DNA from the two subjects were measured to be 12.1 kb (22-year-old) and 6.9 kb (73-year-old), consistent with their biological ages. The study probed feasibility of 1) multi-metric assessment under free living conditions, and 2) tracking of the various metrics over time.","PeriodicalId":42100,"journal":{"name":"International Journal of Prognostics and Health Management","volume":"1 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Prognostics and Health Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.36001/ijphm.2021.v12i4.2914","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1

Abstract

Acute injury to aged individuals represents a significant challenge to the global healthcare community as these injuries are frequently treated in a reactive method due to the infeasibility of frequent visits to the hospital for biometric monitoring. However, there is potential to prevent a large number of these cases through passive, at-home monitoring of multiple physiological parameters related to various causes that are common to aged adults in general. This research strives to implement wearable devices, ambient “smart home” devices, and minimally invasive blood and urine analysis to test the feasibility of implementation of a multitude of research-level (i.e. not yet clinically validated) methods simultaneously in a “smart system”. The system comprises measures of balance, breathing, heart rate, metabolic rate, joint flexibility, hydration, and physical performance functions in addition to lab testing related to biological aging and mechanical cell strength. A proof-of-concept test is illustrated for two adult males of different ages: a 22-year-old and a 73-year-old matched in body mass index (BMI). The integrated system is test in this work, a pilot study, demonstrating functionality and age-related clinical relevance. The two subjects had physiological measurements taken in several settings during the pilot study: seated, biking, and lying down. Balance measurements indicated changes in sway area of 45.45% and 25.44%, respectively for before/after biking. The 22-year-old and the 73-year-old saw heart rate variabilities of 0.11 and 0.02 seconds at resting conditions, and metabolic rate changes of 277.38% and 222.23%, respectively, in comparison between the biking and seated conditions. A smart camera was used to assess biking speed and the 22- and 73-year-old subjects biked at 60 rpm and 28.5 rpm, respectively. The 22-year-old subject saw a 7 times greater electrical resistance change using a joint flexibility sensor inside of their index finger in comparison with the 73-year-old male. The 22 and 73-year-old males saw respective 28% and 48% increases in their urine ammonium concentration before/after the experiment. The average lengths of the telomere DNA from the two subjects were measured to be 12.1 kb (22-year-old) and 6.9 kb (73-year-old), consistent with their biological ages. The study probed feasibility of 1) multi-metric assessment under free living conditions, and 2) tracking of the various metrics over time.
用于监测年轻人和老年人相关生理参数的集成传感系统
老年人的急性损伤对全球医疗界来说是一个重大挑战,因为由于不可能经常去医院进行生物特征监测,这些损伤通常以反应性方法治疗。然而,有可能通过被动的、在家监测与各种原因相关的多种生理参数来预防大量这些病例,这些原因在老年人中是常见的。本研究力求实现可穿戴设备、环境“智能家居”设备和微创血液和尿液分析,以测试在“智能系统”中同时实施多种研究级(即尚未临床验证)方法的可行性。该系统包括平衡、呼吸、心率、代谢率、关节柔韧性、水合作用和物理性能功能的测量,以及与生物老化和机械细胞强度相关的实验室测试。对两个不同年龄的成年男性进行了概念验证测试:一个22岁,一个73岁,身体质量指数(BMI)相符。综合系统在这项工作中进行了测试,这是一项试点研究,展示了功能和与年龄相关的临床相关性。在初步研究中,两名受试者在几种情况下进行了生理测量:坐着、骑自行车和躺着。平衡测量显示,在骑自行车之前和之后,摇摆面积的变化分别为45.45%和25.44%。与骑车和坐着的情况相比,22岁和73岁的老人在静息状态下的心率变化分别为0.11秒和0.02秒,代谢率变化分别为277.38%和222.23%。研究人员使用智能相机来评估骑车速度,22岁和73岁的受试者分别以每分钟60转和每分钟28.5转的速度骑车。22岁的受试者使用食指内的关节柔韧性传感器观察到的电阻变化是73岁男性的7倍。22岁和73岁的男性在实验前后尿铵浓度分别增加了28%和48%。这两名受试者的端粒DNA平均长度分别为12.1 kb(22岁)和6.9 kb(73岁),与他们的生物学年龄一致。该研究探讨了1)在自由生活条件下多指标评估的可行性,2)随时间跟踪各种指标的可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.90
自引率
9.50%
发文量
18
审稿时长
9 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信