Compressive sensing-based sparse channel estimation method for MIMO-OFDM systems

Q4 Engineering
N. Wang, Guan Gui, Yongtao Su, Jingfeng Shi, Ping Zhang
{"title":"Compressive sensing-based sparse channel estimation method for MIMO-OFDM systems","authors":"N. Wang, Guan Gui, Yongtao Su, Jingfeng Shi, Ping Zhang","doi":"10.3969/J.ISSN.1001-0548.2013.01.014","DOIUrl":null,"url":null,"abstract":"Channel equalization and coherent detection require accurate channel state information(CSI) at the receiver for multiple-input multiple-output orthogonal frequency division multiplexing(MIMO-OFDM) systems.The conventional linear recovery methods,such as least squares(LS) and minimum mean square error(MMSE),are widely adapted in channel estimation under the assumption of rich multipath.However,numerous physical measurements have verified that the practical multipath channels tend to exhibit sparse structures.In this paper,exploiting the channel sparsity,we propose a compressive sensing-based CoSaMP recovery algorithm for MIMO-OFDM sparse channel estimation.Simulations show that the compressive sensing estimation method can obtain the accurate CSI with fewer pilots than conventional linear estimation for MIMO-OFDM systems at the cost of less computational complexity.The proposed method can greatly improve the spectrum efficiency for MIMO-OFDM systems.","PeriodicalId":35864,"journal":{"name":"电子科技大学学报","volume":"42 1","pages":"58-62"},"PeriodicalIF":0.0000,"publicationDate":"2013-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"电子科技大学学报","FirstCategoryId":"1093","ListUrlMain":"https://doi.org/10.3969/J.ISSN.1001-0548.2013.01.014","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 1

Abstract

Channel equalization and coherent detection require accurate channel state information(CSI) at the receiver for multiple-input multiple-output orthogonal frequency division multiplexing(MIMO-OFDM) systems.The conventional linear recovery methods,such as least squares(LS) and minimum mean square error(MMSE),are widely adapted in channel estimation under the assumption of rich multipath.However,numerous physical measurements have verified that the practical multipath channels tend to exhibit sparse structures.In this paper,exploiting the channel sparsity,we propose a compressive sensing-based CoSaMP recovery algorithm for MIMO-OFDM sparse channel estimation.Simulations show that the compressive sensing estimation method can obtain the accurate CSI with fewer pilots than conventional linear estimation for MIMO-OFDM systems at the cost of less computational complexity.The proposed method can greatly improve the spectrum efficiency for MIMO-OFDM systems.
基于压缩感知的MIMO-OFDM系统稀疏信道估计方法
在多输入多输出正交频分复用(MIMO-OFDM)系统中,信道均衡和相干检测需要精确的信道状态信息(CSI)。传统的线性恢复方法,如最小二乘(LS)和最小均方误差(MMSE),广泛应用于富多径假设下的信道估计。然而,大量的物理测量已经证实,实际的多径通道往往表现出稀疏的结构。本文利用信道的稀疏性,提出了一种基于压缩感知的CoSaMP恢复算法,用于MIMO-OFDM稀疏信道估计。仿真结果表明,与传统的线性估计相比,压缩感知估计方法可以在较少导频的情况下获得精确的MIMO-OFDM系统CSI,且计算复杂度较低。该方法可以大大提高MIMO-OFDM系统的频谱效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
电子科技大学学报
电子科技大学学报 Engineering-Electrical and Electronic Engineering
CiteScore
1.40
自引率
0.00%
发文量
7228
期刊介绍:
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信