{"title":"Improved Zero-DCE for pig face image enhancement with low-light and high-noise","authors":"Ronghua Gao, Jiabin Dong, Qifeng Li, Lu Fenga c","doi":"10.3233/jcm-226858","DOIUrl":null,"url":null,"abstract":"To solve the problem that individual visual features could not be accurately extracted from low-light and high-noise pig face images in intensive farming, the optimal fitting curve parameters of image brightness enhancement were defined, and the Zero-DCE model was improved and Denoise-Net was introduced to achieve brightness enhancement and high-noise suppression of a single low-light pig face image. The experimental results show that, compared with EnlightGAN, Zero-DCE, Retinex, and SSE, the algorithm in this paper (DCE-Denoise-Net) has good results on image quality metrics such as information entropy, Brisque, NIQE, and PIQE in the absence of reference images. The image quality is improved. On the basis of improving the low visibility of low-light images, denoising was achieved. It is more suitable for low-light pig face image enhancement in a real breeding environment.","PeriodicalId":45004,"journal":{"name":"Journal of Computational Methods in Sciences and Engineering","volume":"28 1","pages":"2699-2709"},"PeriodicalIF":0.5000,"publicationDate":"2023-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Methods in Sciences and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/jcm-226858","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
To solve the problem that individual visual features could not be accurately extracted from low-light and high-noise pig face images in intensive farming, the optimal fitting curve parameters of image brightness enhancement were defined, and the Zero-DCE model was improved and Denoise-Net was introduced to achieve brightness enhancement and high-noise suppression of a single low-light pig face image. The experimental results show that, compared with EnlightGAN, Zero-DCE, Retinex, and SSE, the algorithm in this paper (DCE-Denoise-Net) has good results on image quality metrics such as information entropy, Brisque, NIQE, and PIQE in the absence of reference images. The image quality is improved. On the basis of improving the low visibility of low-light images, denoising was achieved. It is more suitable for low-light pig face image enhancement in a real breeding environment.
期刊介绍:
The major goal of the Journal of Computational Methods in Sciences and Engineering (JCMSE) is the publication of new research results on computational methods in sciences and engineering. Common experience had taught us that computational methods originally developed in a given basic science, e.g. physics, can be of paramount importance to other neighboring sciences, e.g. chemistry, as well as to engineering or technology and, in turn, to society as a whole. This undoubtedly beneficial practice of interdisciplinary interactions will be continuously and systematically encouraged by the JCMSE.