{"title":"Effect of pH value on effectiveness of biopolymer-based treatment of bauxite mine slurry","authors":"J. Meng, Shanmei Li, Rongtao Yan, C. Wei","doi":"10.37190/ppmp/167949","DOIUrl":null,"url":null,"abstract":"Effective dehydration and flocculation of mine slurries or sludge is important for nonferrous metal industries and environmental engineering. However, the mechanisms for the flocculation of slurry remain largely unclear. This paper presents the results of a series of flocculation tests, which was conducted on the slurry suspensions treated by xanthan gum (flocculant) at different pH values. It is shown that the settlement rate of mine slurry particles can be accelerated by adding xanthan gum, and the maximum sedimentation rate was obtained at a pH value of 5.9, and the final volume of flocs is significantly increased due to the addition of the flocculant. In addition, the settlement rates of xanthan gum-treated slurry suspensions at the pH values of 3, 5 and 7 decrease slightly compared with the reference slurry suspensions with pH=5.9, and the slurries remained stable as suspensions at the pH value of 9 and 11. The zeta potential measurement and SEM image analysis show that flocculation occurs primarily due to electrostatic attraction between slurry particles and the flocculants, and the bridging effect between the carboxylic groups in the side chains of xanthan gum molecule and the suspension particles.","PeriodicalId":49137,"journal":{"name":"Physicochemical Problems of Mineral Processing","volume":"1 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2023-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physicochemical Problems of Mineral Processing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.37190/ppmp/167949","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Effective dehydration and flocculation of mine slurries or sludge is important for nonferrous metal industries and environmental engineering. However, the mechanisms for the flocculation of slurry remain largely unclear. This paper presents the results of a series of flocculation tests, which was conducted on the slurry suspensions treated by xanthan gum (flocculant) at different pH values. It is shown that the settlement rate of mine slurry particles can be accelerated by adding xanthan gum, and the maximum sedimentation rate was obtained at a pH value of 5.9, and the final volume of flocs is significantly increased due to the addition of the flocculant. In addition, the settlement rates of xanthan gum-treated slurry suspensions at the pH values of 3, 5 and 7 decrease slightly compared with the reference slurry suspensions with pH=5.9, and the slurries remained stable as suspensions at the pH value of 9 and 11. The zeta potential measurement and SEM image analysis show that flocculation occurs primarily due to electrostatic attraction between slurry particles and the flocculants, and the bridging effect between the carboxylic groups in the side chains of xanthan gum molecule and the suspension particles.
期刊介绍:
Physicochemical Problems of Mineral Processing is an international, open access journal which covers theoretical approaches and their practical applications in all aspects of mineral processing and extractive metallurgy.
Criteria for publication in the Physicochemical Problems of Mineral Processing journal are novelty, quality and current interest. Manuscripts which only make routine use of minor extensions to well established methodologies are not appropriate for the journal.
Topics of interest
Analytical techniques and applied mineralogy
Computer applications
Comminution, classification and sorting
Froth flotation
Solid-liquid separation
Gravity concentration
Magnetic and electric separation
Hydro and biohydrometallurgy
Extractive metallurgy
Recycling and mineral wastes
Environmental aspects of mineral processing
and other mineral processing related subjects.