Identification of advanced optical modulation formatand estimation of signal-to-noise-ratio based on parallel-twin convolutional neural network

IF 0.7 4区 物理与天体物理 Q4 OPTICS
Optica Applicata Pub Date : 2023-01-01 DOI:10.37190/oa230209
Xiaowei Dong, Zhihui Yu
{"title":"Identification of advanced optical modulation formatand estimation of signal-to-noise-ratio based on parallel-twin convolutional neural network","authors":"Xiaowei Dong, Zhihui Yu","doi":"10.37190/oa230209","DOIUrl":null,"url":null,"abstract":"In this paper, we design a parallel-twin convolutional neural network (PT-CNN) deep learning model and use the signal constellation diagram to realize the identification of six advanced optical modulation formats (QPSK, 4QAM, 8PSK, 8QAM, 16PSK, 16QAM) and signal-to-noise-ratio (SNR) estimation. The influence of PT-CNN with different layers and kernel sizes is investigated and the optimal network model is chosen. Simulation results demonstrate that the proposed method has the advantages of not requiring manual feature extraction, having the ability to clearly distinguish the six modulation formats with 100% accuracy when SNR of the received signal sequences is higher than 12 dB. In addition, the high-accurate SNR estimation is realized simultaneously without increasing additional system complexity.","PeriodicalId":19589,"journal":{"name":"Optica Applicata","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optica Applicata","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.37190/oa230209","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we design a parallel-twin convolutional neural network (PT-CNN) deep learning model and use the signal constellation diagram to realize the identification of six advanced optical modulation formats (QPSK, 4QAM, 8PSK, 8QAM, 16PSK, 16QAM) and signal-to-noise-ratio (SNR) estimation. The influence of PT-CNN with different layers and kernel sizes is investigated and the optimal network model is chosen. Simulation results demonstrate that the proposed method has the advantages of not requiring manual feature extraction, having the ability to clearly distinguish the six modulation formats with 100% accuracy when SNR of the received signal sequences is higher than 12 dB. In addition, the high-accurate SNR estimation is realized simultaneously without increasing additional system complexity.
基于并行双卷积神经网络的先进光调制格式识别及信噪比估计
本文设计了并行-孪生卷积神经网络(PT-CNN)深度学习模型,并利用信号星座图实现了六种高级光调制格式(QPSK、4QAM、8PSK、8QAM、16PSK、16QAM)的识别和信噪比估计。研究了不同层数和核大小对PT-CNN的影响,选择了最优网络模型。仿真结果表明,该方法不需要人工特征提取,当接收信号序列的信噪比大于12 dB时,能够以100%的准确率清晰区分6种调制格式。同时,在不增加系统复杂度的前提下,实现了高精度的信噪比估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Optica Applicata
Optica Applicata 物理-光学
CiteScore
1.00
自引率
16.70%
发文量
21
审稿时长
4 months
期刊介绍: Acoustooptics, atmospheric and ocean optics, atomic and molecular optics, coherence and statistical optics, biooptics, colorimetry, diffraction and gratings, ellipsometry and polarimetry, fiber optics and optical communication, Fourier optics, holography, integrated optics, lasers and their applications, light detectors, light and electron beams, light sources, liquid crystals, medical optics, metamaterials, microoptics, nonlinear optics, optical and electron microscopy, optical computing, optical design and fabrication, optical imaging, optical instrumentation, optical materials, optical measurements, optical modulation, optical properties of solids and thin films, optical sensing, optical systems and their elements, optical trapping, optometry, photoelasticity, photonic crystals, photonic crystal fibers, photonic devices, physical optics, quantum optics, slow and fast light, spectroscopy, storage and processing of optical information, ultrafast optics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信