Shujia Wan, Qiong Gong, Hongjuan Wang, Shibang Ma, Yi Qin
{"title":"Compressed optical image encryption in the diffractive-imaging-based scheme by input plane and output plane random sampling","authors":"Shujia Wan, Qiong Gong, Hongjuan Wang, Shibang Ma, Yi Qin","doi":"10.37190/oa220104","DOIUrl":null,"url":null,"abstract":"The successful recovery of the plaintext in the simplified diffractive-imaging-based encryption (S-DIBE) scheme needs to record one intact axial intensity map as the ciphertext. By aid of compressive sensing, we propose here a new image encryption approach, referred to as compressed DIBE (C-DIBE), which allows further compression of the intensity map. The plaintext is sampled before being sent to DIBE. Afterwards, the intensity map recorded by the CCD camera is also processed by such sampling operation to generate the ciphertext. For decryption, we first obtain the sparse plaintext using the proposed phase retrieval algorithm, and then reobtain the primary plaintext from it via compressive sensing. Numerical results show that a proper proportion of the intensity map (e.g. 50%) is enough to totally recover a grayscale image. We achieve multiple-image encryption by space multiplexing without enlarging the size of the ciphertext. The robustness of C-DIBE against brute-force attack evidently outperforms S-DIBE due to the extended key space. Numerical simulation has been presented to confirm the proposal.","PeriodicalId":19589,"journal":{"name":"Optica Applicata","volume":"1 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optica Applicata","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.37190/oa220104","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 2
Abstract
The successful recovery of the plaintext in the simplified diffractive-imaging-based encryption (S-DIBE) scheme needs to record one intact axial intensity map as the ciphertext. By aid of compressive sensing, we propose here a new image encryption approach, referred to as compressed DIBE (C-DIBE), which allows further compression of the intensity map. The plaintext is sampled before being sent to DIBE. Afterwards, the intensity map recorded by the CCD camera is also processed by such sampling operation to generate the ciphertext. For decryption, we first obtain the sparse plaintext using the proposed phase retrieval algorithm, and then reobtain the primary plaintext from it via compressive sensing. Numerical results show that a proper proportion of the intensity map (e.g. 50%) is enough to totally recover a grayscale image. We achieve multiple-image encryption by space multiplexing without enlarging the size of the ciphertext. The robustness of C-DIBE against brute-force attack evidently outperforms S-DIBE due to the extended key space. Numerical simulation has been presented to confirm the proposal.
期刊介绍:
Acoustooptics, atmospheric and ocean optics, atomic and molecular optics, coherence and statistical optics, biooptics, colorimetry, diffraction and gratings, ellipsometry and polarimetry, fiber optics and optical communication, Fourier optics, holography, integrated optics, lasers and their applications, light detectors, light and electron beams, light sources, liquid crystals, medical optics, metamaterials, microoptics, nonlinear optics, optical and electron microscopy, optical computing, optical design and fabrication, optical imaging, optical instrumentation, optical materials, optical measurements, optical modulation, optical properties of solids and thin films, optical sensing, optical systems and their elements, optical trapping, optometry, photoelasticity, photonic crystals, photonic crystal fibers, photonic devices, physical optics, quantum optics, slow and fast light, spectroscopy, storage and processing of optical information, ultrafast optics.