{"title":"Image encryption algorithm based on rear-mountedphase mask and random decomposition","authors":"S. Yadav, H. Singh","doi":"10.37190/oa220204","DOIUrl":null,"url":null,"abstract":"To escalate the image encryption a new method has been devised which includes double random phase encoding (DRPE) using rear phase masking and random decomposition (RD) technique stranded on fractional Fourier transform. Here, asymmetric cryptographic system is developed in fractional Fourier transform (FrFT) mode using two random phase masks (RPM) and a rear mounted phase mask. In the projected scheme a colored image is decomposed into R, G and B channels. The amplitude of each channel is normalized, phase encoded and modulated using RPM. The modulated R, G and B channels of the colored image are individually transformed using FrFT to produce corresponding encrypted image. The proposed scheme is authorized on grayscale image also. The norm behind the development of the suggested scheme has been elaborated by carrying out cryptanalysis on system based on the RD. The method helps in escalations of the protection of double random phase encoding by cumulating the key length and the parameter amount, so that it vigorously can be used against various attacks. The forte of the suggested cryptographic system was verified using simulations with MATLAB 7.9.0 (R2008a). The efficiency of the suggested scheme includes the analysis using singular value decomposition (SVD), histogram and correlation coefficient.","PeriodicalId":19589,"journal":{"name":"Optica Applicata","volume":"1 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optica Applicata","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.37190/oa220204","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 1
Abstract
To escalate the image encryption a new method has been devised which includes double random phase encoding (DRPE) using rear phase masking and random decomposition (RD) technique stranded on fractional Fourier transform. Here, asymmetric cryptographic system is developed in fractional Fourier transform (FrFT) mode using two random phase masks (RPM) and a rear mounted phase mask. In the projected scheme a colored image is decomposed into R, G and B channels. The amplitude of each channel is normalized, phase encoded and modulated using RPM. The modulated R, G and B channels of the colored image are individually transformed using FrFT to produce corresponding encrypted image. The proposed scheme is authorized on grayscale image also. The norm behind the development of the suggested scheme has been elaborated by carrying out cryptanalysis on system based on the RD. The method helps in escalations of the protection of double random phase encoding by cumulating the key length and the parameter amount, so that it vigorously can be used against various attacks. The forte of the suggested cryptographic system was verified using simulations with MATLAB 7.9.0 (R2008a). The efficiency of the suggested scheme includes the analysis using singular value decomposition (SVD), histogram and correlation coefficient.
期刊介绍:
Acoustooptics, atmospheric and ocean optics, atomic and molecular optics, coherence and statistical optics, biooptics, colorimetry, diffraction and gratings, ellipsometry and polarimetry, fiber optics and optical communication, Fourier optics, holography, integrated optics, lasers and their applications, light detectors, light and electron beams, light sources, liquid crystals, medical optics, metamaterials, microoptics, nonlinear optics, optical and electron microscopy, optical computing, optical design and fabrication, optical imaging, optical instrumentation, optical materials, optical measurements, optical modulation, optical properties of solids and thin films, optical sensing, optical systems and their elements, optical trapping, optometry, photoelasticity, photonic crystals, photonic crystal fibers, photonic devices, physical optics, quantum optics, slow and fast light, spectroscopy, storage and processing of optical information, ultrafast optics.