Hong Li, Haoyue Zhang, Yanming Song, Fanyong Meng, Lianqing Zhu
{"title":"Dual-parameter sensing characteristics of a single fiber Bragg grating half-pasted by 1C-LV epoxy under different curing","authors":"Hong Li, Haoyue Zhang, Yanming Song, Fanyong Meng, Lianqing Zhu","doi":"10.37190/oa210307","DOIUrl":null,"url":null,"abstract":"A novel technology for the simultaneous and independent measurement of dual parameters is proposed and experimented. By using a single fiber Bragg grating half-pasted by 1C-LV epoxy under different curing conditions, the sensor structure is designed such that the reflective single-peak spectrum splits into a twin-peak spectrum, which makes the FBG spectrum form a natural spectral peak splitting bias. A measurement limitation exists in the FBG sensor packaging at room temperature, which can be solved by the high-temperature cured packaging method. To verify the validity of the theory and methodology, the experimental system is used. In the range from –1000 to +1000 με and from 35 to 75°C, the Bragg wavelength change is relative linear to the strain and temperature. The temperature and strain variations can be independently and simultaneously measured using the split peak, and the deviations of the FBG sensor are ±1°C and ±5 με, respectively. This single FBG sensor can realize dual-parameter measurement, which is valuable for narrow-space health monitoring.","PeriodicalId":19589,"journal":{"name":"Optica Applicata","volume":"1 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optica Applicata","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.37190/oa210307","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 1
Abstract
A novel technology for the simultaneous and independent measurement of dual parameters is proposed and experimented. By using a single fiber Bragg grating half-pasted by 1C-LV epoxy under different curing conditions, the sensor structure is designed such that the reflective single-peak spectrum splits into a twin-peak spectrum, which makes the FBG spectrum form a natural spectral peak splitting bias. A measurement limitation exists in the FBG sensor packaging at room temperature, which can be solved by the high-temperature cured packaging method. To verify the validity of the theory and methodology, the experimental system is used. In the range from –1000 to +1000 με and from 35 to 75°C, the Bragg wavelength change is relative linear to the strain and temperature. The temperature and strain variations can be independently and simultaneously measured using the split peak, and the deviations of the FBG sensor are ±1°C and ±5 με, respectively. This single FBG sensor can realize dual-parameter measurement, which is valuable for narrow-space health monitoring.
期刊介绍:
Acoustooptics, atmospheric and ocean optics, atomic and molecular optics, coherence and statistical optics, biooptics, colorimetry, diffraction and gratings, ellipsometry and polarimetry, fiber optics and optical communication, Fourier optics, holography, integrated optics, lasers and their applications, light detectors, light and electron beams, light sources, liquid crystals, medical optics, metamaterials, microoptics, nonlinear optics, optical and electron microscopy, optical computing, optical design and fabrication, optical imaging, optical instrumentation, optical materials, optical measurements, optical modulation, optical properties of solids and thin films, optical sensing, optical systems and their elements, optical trapping, optometry, photoelasticity, photonic crystals, photonic crystal fibers, photonic devices, physical optics, quantum optics, slow and fast light, spectroscopy, storage and processing of optical information, ultrafast optics.