Large Scale Fine-Tuned Transformers Models Application for Business Names Generation

IF 0.7 4区 计算机科学 Q4 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Mantas Lukauskas, Tomas Rasymas, Matas Minelga, Domas Vaitmonas
{"title":"Large Scale Fine-Tuned Transformers Models Application for Business Names Generation","authors":"Mantas Lukauskas, Tomas Rasymas, Matas Minelga, Domas Vaitmonas","doi":"10.31577/cai_2023_3_525","DOIUrl":null,"url":null,"abstract":". Natural language processing (NLP) involves the computer analysis and processing of human languages using a variety of techniques aimed at adapting various tasks or computer programs to linguistically process natural language. Currently, NLP is increasingly applied to a wide range of real-world problems. These tasks can vary from extracting meaningful information from unstructured data, analyzing sentiment, translating text between languages, to generating human-level text autonomously. The goal of this study is to employ transformer-based natural language models to generate high-quality business names. Specifically, this work investigates whether larger models, which require more training time, yield better results for generating relatively short texts, such as business names. To achieve","PeriodicalId":55215,"journal":{"name":"Computing and Informatics","volume":"42 1","pages":"525-545"},"PeriodicalIF":0.7000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computing and Informatics","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.31577/cai_2023_3_525","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

. Natural language processing (NLP) involves the computer analysis and processing of human languages using a variety of techniques aimed at adapting various tasks or computer programs to linguistically process natural language. Currently, NLP is increasingly applied to a wide range of real-world problems. These tasks can vary from extracting meaningful information from unstructured data, analyzing sentiment, translating text between languages, to generating human-level text autonomously. The goal of this study is to employ transformer-based natural language models to generate high-quality business names. Specifically, this work investigates whether larger models, which require more training time, yield better results for generating relatively short texts, such as business names. To achieve
大规模微调变压器模型在企业名称生成中的应用
. 自然语言处理(NLP)涉及使用各种技术对人类语言进行计算机分析和处理,旨在使各种任务或计算机程序在语言上处理自然语言。目前,NLP越来越多地应用于广泛的现实问题。这些任务可以从非结构化数据中提取有意义的信息,分析情感,在语言之间翻译文本,到自动生成人类级别的文本。本研究的目标是使用基于转换器的自然语言模型来生成高质量的企业名称。具体来说,这项工作调查了需要更多训练时间的大型模型是否在生成相对较短的文本(如企业名称)时产生更好的结果。为了实现
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Computing and Informatics
Computing and Informatics 工程技术-计算机:人工智能
CiteScore
1.60
自引率
14.30%
发文量
19
审稿时长
9 months
期刊介绍: Main Journal Topics: COMPUTER ARCHITECTURES AND NETWORKING PARALLEL AND DISTRIBUTED COMPUTING THEORETICAL FOUNDATIONS SOFTWARE ENGINEERING KNOWLEDGE AND INFORMATION ENGINEERING Apart from the main topics given above, the Editorial Board welcomes papers from other areas of computing and informatics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信