The effects of season and processing technology on the abundance of antibiotic resistance genes in air samples from municipal wastewater treatment and waste management plants

IF 0.5 4区 环境科学与生态学 Q4 ENGINEERING, ENVIRONMENTAL
A. Osińska, P. Jachimowicz, Sebastian Niestępski, M. Harnisz, E. Korzeniewska
{"title":"The effects of season and processing technology on the abundance of antibiotic resistance genes in air samples from municipal wastewater treatment and waste management plants","authors":"A. Osińska, P. Jachimowicz, Sebastian Niestępski, M. Harnisz, E. Korzeniewska","doi":"10.37190/EPE210108","DOIUrl":null,"url":null,"abstract":"This study aimed to perform a qualitative and a quantitative assessment of the prevalence of genes encoding resistance to beta-lactam, tetracycline, and chloramphenicol antibiotics in samples of DNA isolated from air in a municipal wastewater treatment plant (WWTP) and a municipal waste management plant (WMP). Air samples were collected in the mechanical (MP) and biological (BP) processing units of WWTP and WMP in winter and spring. The samples of air were collected by impingement into PBS solution and subsequently, DNA was isolated. The prevalence of the 16S r RNA gene and ARGs was determined by PCR, and the most abundant ARGs were quantified by qPCR. The highest diversity of the analyzed ARGs was noted in air samples collected in the mechanical processing units of the WWTP (winter) and the WMP (spring). The copy of ARGs varied between treatment units and seasons. ARGs were most abundant in air samples collected in spring in the MP units of both the WWTP and the WMP. The study demonstrated that ARGs are ubiquitous in the air in both WWTPs and WMPs. The presence of ARGs in the air can exert a negative impact on the health of plant employees.","PeriodicalId":11709,"journal":{"name":"Environment Protection Engineering","volume":"1 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environment Protection Engineering","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.37190/EPE210108","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 1

Abstract

This study aimed to perform a qualitative and a quantitative assessment of the prevalence of genes encoding resistance to beta-lactam, tetracycline, and chloramphenicol antibiotics in samples of DNA isolated from air in a municipal wastewater treatment plant (WWTP) and a municipal waste management plant (WMP). Air samples were collected in the mechanical (MP) and biological (BP) processing units of WWTP and WMP in winter and spring. The samples of air were collected by impingement into PBS solution and subsequently, DNA was isolated. The prevalence of the 16S r RNA gene and ARGs was determined by PCR, and the most abundant ARGs were quantified by qPCR. The highest diversity of the analyzed ARGs was noted in air samples collected in the mechanical processing units of the WWTP (winter) and the WMP (spring). The copy of ARGs varied between treatment units and seasons. ARGs were most abundant in air samples collected in spring in the MP units of both the WWTP and the WMP. The study demonstrated that ARGs are ubiquitous in the air in both WWTPs and WMPs. The presence of ARGs in the air can exert a negative impact on the health of plant employees.
季节和处理工艺对城市污水处理厂空气样本中抗生素耐药基因丰度的影响
本研究旨在定性和定量评估从城市污水处理厂(WWTP)和城市废物处理厂(WMP)的空气中分离的DNA样本中编码β -内酰胺、四环素和氯霉素抗生素耐药基因的流行程度。冬季和春季分别在污水处理厂和污水处理厂的机械(MP)和生物(BP)处理单元采集空气样本。通过撞击PBS溶液收集空气样本,随后分离DNA。PCR检测16S r RNA基因和ARGs的流行率,qPCR检测最丰富的ARGs。在污水处理厂(冬季)和水处理厂(春季)的机械处理单元收集的空气样本中,所分析的ARGs的多样性最高。arg的副本在治疗单位和季节之间有所不同。春季收集的空气样本中ARGs含量最高的是污水处理厂和水处理厂的MP单元。该研究表明,在污水处理厂和水处理厂的空气中,arg无处不在。空气中ARGs的存在会对工厂员工的健康产生负面影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Environment Protection Engineering
Environment Protection Engineering 环境科学-工程:环境
CiteScore
0.80
自引率
0.00%
发文量
9
审稿时长
12 months
期刊介绍: Water purification, wastewater treatment, water reuse, solid waste disposal, gas emission abatement, systems of water and air pollution control, soil remediation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信