Curvature based characterization of radial Basis Functions: Application to interpolation

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Mohammad Heidari, Maryam Mohammadi, S. Marchi
{"title":"Curvature based characterization of radial Basis Functions: Application to interpolation","authors":"Mohammad Heidari, Maryam Mohammadi, S. Marchi","doi":"10.3846/mma.2023.16897","DOIUrl":null,"url":null,"abstract":"Choosing the scale or shape parameter of radial basis functions (RBFs) is a well-documented but still an open problem in kernel-based methods. It is common to tune it according to the applications, and it plays a crucial role both for the accuracy and stability of the method. In this paper, we first devise a direct relation between the shape parameter of RBFs and their curvature at each point. This leads to characterizing RBFs to scalable and unscalable ones. We prove that all scalable RBFs lie in the -class which means that their curvature at the point xj is proportional to, where cj is the corresponding spatially variable shape parameter at xj. Some of the most commonly used RBFs are then characterized and classified accordingly to their curvature. Then, the fundamental theory of plane curves helps us recover univariate functions from scattered data, by enforcing the exact and approximate solutions have the same curvature at the point where they meet. This leads to introducing curvature-based scaled RBFs with shape parameters depending on the function values and approximate curvature values of the function to be approximated. Several numerical experiments are devoted to show that the method performs better than the standard fixed-scale basis and some other shape parameter selection methods.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3846/mma.2023.16897","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Choosing the scale or shape parameter of radial basis functions (RBFs) is a well-documented but still an open problem in kernel-based methods. It is common to tune it according to the applications, and it plays a crucial role both for the accuracy and stability of the method. In this paper, we first devise a direct relation between the shape parameter of RBFs and their curvature at each point. This leads to characterizing RBFs to scalable and unscalable ones. We prove that all scalable RBFs lie in the -class which means that their curvature at the point xj is proportional to, where cj is the corresponding spatially variable shape parameter at xj. Some of the most commonly used RBFs are then characterized and classified accordingly to their curvature. Then, the fundamental theory of plane curves helps us recover univariate functions from scattered data, by enforcing the exact and approximate solutions have the same curvature at the point where they meet. This leads to introducing curvature-based scaled RBFs with shape parameters depending on the function values and approximate curvature values of the function to be approximated. Several numerical experiments are devoted to show that the method performs better than the standard fixed-scale basis and some other shape parameter selection methods.
基于曲率的径向基函数表征:在插值中的应用
选择径向基函数(rbf)的尺度或形状参数是基于核函数的方法中一个有充分文献记载但仍未解决的问题。根据实际应用对其进行调整是很常见的,它对方法的准确性和稳定性起着至关重要的作用。在本文中,我们首先设计了rbf的形状参数与其在每个点的曲率之间的直接关系。这导致将rbf描述为可伸缩的和不可伸缩的。我们证明了所有可伸缩rbf都属于-类,这意味着它们在xj点的曲率与成正比,其中cj是xj点对应的空间可变形状参数。然后根据它们的曲率对一些最常用的rbf进行表征和分类。然后,平面曲线的基本理论帮助我们从分散的数据中恢复单变量函数,通过强制精确和近似解在它们相交的点具有相同的曲率。这导致引入基于曲率的缩放rbf,其形状参数取决于待逼近函数的函数值和近似曲率值。数值实验表明,该方法优于标准定尺度基础和其他形状参数选择方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信