Analysis of friction and wear processes in an innovative spine stabilization system. Part 2. A study and model of the wear of a metal rod-polymer cord friction joint

IF 0.8 4区 医学 Q4 BIOPHYSICS
A. Brończyk
{"title":"Analysis of friction and wear processes in an innovative spine stabilization system. Part 2. A study and model of the wear of a metal rod-polymer cord friction joint","authors":"A. Brończyk","doi":"10.37190/abb-01963-2021-04","DOIUrl":null,"url":null,"abstract":"Purpose: The purpose of this study was to model and describe the processes and phenomena occurring during the sliding interaction between biometal rods (titanium alloys Ti6Al4V and Ti6Al7Nb, austenitic steel AISI 316L, alloy CoCrMo) and PE-UHMW cords, used in spine stabilization systems to treat early-onset idiopathic scoliosis. Methods: The wear of friction joints in two lubricating solutions (acidic sodium lactate and distilled water) at stabilized temperature T = 38 C was studied. The wear of the polymeric cords was investigated through analyses of the chemical composition of the surface of the cords and microscopic examinations of the changes occurring on this surface. In addition, microscopic examinations and EDS analyses of the wear products filtered out from the lubricating medium were carried out. Results: Metallic particles were found to be present in both lubricating solutions at each stage of the friction process. The largest amount of metallic particles was recorded after 5000 motion cycles. Conclusions: The presence of metallic wear products is an evidence of the wear of the harder metal rod due to its friction against the PE-UHMW cord. This means that the use of guided-growth implants poses a risk of inflammations in the peri-implant tissues.","PeriodicalId":6897,"journal":{"name":"Acta of bioengineering and biomechanics","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta of bioengineering and biomechanics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.37190/abb-01963-2021-04","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

Purpose: The purpose of this study was to model and describe the processes and phenomena occurring during the sliding interaction between biometal rods (titanium alloys Ti6Al4V and Ti6Al7Nb, austenitic steel AISI 316L, alloy CoCrMo) and PE-UHMW cords, used in spine stabilization systems to treat early-onset idiopathic scoliosis. Methods: The wear of friction joints in two lubricating solutions (acidic sodium lactate and distilled water) at stabilized temperature T = 38 C was studied. The wear of the polymeric cords was investigated through analyses of the chemical composition of the surface of the cords and microscopic examinations of the changes occurring on this surface. In addition, microscopic examinations and EDS analyses of the wear products filtered out from the lubricating medium were carried out. Results: Metallic particles were found to be present in both lubricating solutions at each stage of the friction process. The largest amount of metallic particles was recorded after 5000 motion cycles. Conclusions: The presence of metallic wear products is an evidence of the wear of the harder metal rod due to its friction against the PE-UHMW cord. This means that the use of guided-growth implants poses a risk of inflammations in the peri-implant tissues.
一种新型脊柱稳定系统的摩擦和磨损过程分析。第2部分。金属杆-聚合物绳摩擦接头磨损的研究与模型
目的:本研究的目的是模拟和描述生物金属棒(钛合金Ti6Al4V和Ti6Al7Nb,奥氏体钢AISI 316L,合金CoCrMo)和PE-UHMW索之间滑动相互作用的过程和现象,用于脊柱稳定系统治疗早发性特发性脊柱侧凸。方法:研究两种润滑液(酸性乳酸钠和蒸馏水)在稳定温度T = 38℃下摩擦接头的磨损。通过对钢丝表面化学成分的分析和对钢丝表面变化的显微检查,研究了钢丝的磨损情况。此外,对从润滑介质中过滤出来的磨损产物进行了显微检查和能谱分析。结果:在摩擦过程的每个阶段,金属颗粒都存在于两种润滑溶液中。在5000次运动循环后,记录到的金属颗粒数量最多。结论:金属磨损产品的存在是硬金属棒磨损的证据,因为它与PE-UHMW线的摩擦。这意味着使用引导生长的植入物会造成植入物周围组织炎症的风险。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Acta of bioengineering and biomechanics
Acta of bioengineering and biomechanics BIOPHYSICS-ENGINEERING, BIOMEDICAL
CiteScore
2.10
自引率
10.00%
发文量
0
期刊介绍: Acta of Bioengineering and Biomechanics is a platform allowing presentation of investigations results, exchange of ideas and experiences among researchers with technical and medical background. Papers published in Acta of Bioengineering and Biomechanics may cover a wide range of topics in biomechanics, including, but not limited to: Tissue Biomechanics, Orthopedic Biomechanics, Biomaterials, Sport Biomechanics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信