Convergence of a variational iterative Algorithm for nonlocal vibrations Analysis of a nanotube Conveying fluid

IF 1.6 3区 数学 Q1 MATHEMATICS
Olga Martin
{"title":"Convergence of a variational iterative Algorithm for nonlocal vibrations Analysis of a nanotube Conveying fluid","authors":"Olga Martin","doi":"10.3846/mma.2023.16620","DOIUrl":null,"url":null,"abstract":"The amplitudes of the forced oscillations of a nano-structure conveying fluid are the solutions of an inhomogeneous integral-differential system. This is solved by an easily accessible scheme based on the variational iteration method (VIM), Galerkin’s method and the Laplace transform techniques. The presented method is accompanied by the study of the convergence of the iterative process and of the errors. In the literature, the dynamic response of a viscoelastic nanotube conveying fluid is frequently obtained by an iterative method. This leads to the double convolution products, whose presence will be avoided in the new method proposed in this paper. Thus, the numerical results will be obtained much faster and more accurately.","PeriodicalId":49861,"journal":{"name":"Mathematical Modelling and Analysis","volume":"28 1","pages":"360-373"},"PeriodicalIF":1.6000,"publicationDate":"2023-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Modelling and Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3846/mma.2023.16620","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

The amplitudes of the forced oscillations of a nano-structure conveying fluid are the solutions of an inhomogeneous integral-differential system. This is solved by an easily accessible scheme based on the variational iteration method (VIM), Galerkin’s method and the Laplace transform techniques. The presented method is accompanied by the study of the convergence of the iterative process and of the errors. In the literature, the dynamic response of a viscoelastic nanotube conveying fluid is frequently obtained by an iterative method. This leads to the double convolution products, whose presence will be avoided in the new method proposed in this paper. Thus, the numerical results will be obtained much faster and more accurately.
纳米管输送流体非局部振动分析的变分迭代算法的收敛性
纳米结构输送流体的强迫振荡振幅是一个非齐次积分-微分系统的解。基于变分迭代法(VIM)、伽辽金法和拉普拉斯变换技术,提出了一种简便易行的求解方案。该方法对迭代过程的收敛性和误差进行了研究。在文献中,粘弹性纳米管输送流体的动态响应通常是通过迭代法获得的。这就导致了双重卷积积的产生,本文提出的新方法将避免双重卷积积的存在。这样可以更快、更准确地得到数值结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.80
自引率
5.60%
发文量
28
审稿时长
4.5 months
期刊介绍: Mathematical Modelling and Analysis publishes original research on all areas of mathematical modelling and analysis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信