Aaron Abrams, E. Babson, H. Landau, Zeph Landau, James Pommersheim
{"title":"No cutoff for circulants: an elementary proof","authors":"Aaron Abrams, E. Babson, H. Landau, Zeph Landau, James Pommersheim","doi":"10.37190/0208-4147.00032","DOIUrl":null,"url":null,"abstract":". We give an elementary proof of a result due to Diaconis and Saloff-Coste (1994) that families of symmetric simple random walks on Cayley graphs of abelian groups with a bound on the number of generators never have sharp cutoff. Here convergence to the stationary distribution is measured in the total variation norm. This is a situation of bounded degree and no expansion; sharp cutoff (or the cutoff phenomenon) has been shown to occur in families such as random walks on a hypercube (Diaco-nis, 1996) in which the degree is unbounded as well as on a random regular graph where the degree is fixed, but there is expansion (Diaconis and Saloff-Coste, 1993).","PeriodicalId":48996,"journal":{"name":"Probability and Mathematical Statistics-Poland","volume":null,"pages":null},"PeriodicalIF":0.4000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Probability and Mathematical Statistics-Poland","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.37190/0208-4147.00032","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0
Abstract
. We give an elementary proof of a result due to Diaconis and Saloff-Coste (1994) that families of symmetric simple random walks on Cayley graphs of abelian groups with a bound on the number of generators never have sharp cutoff. Here convergence to the stationary distribution is measured in the total variation norm. This is a situation of bounded degree and no expansion; sharp cutoff (or the cutoff phenomenon) has been shown to occur in families such as random walks on a hypercube (Diaco-nis, 1996) in which the degree is unbounded as well as on a random regular graph where the degree is fixed, but there is expansion (Diaconis and Saloff-Coste, 1993).
期刊介绍:
PROBABILITY AND MATHEMATICAL STATISTICS is published by the Kazimierz Urbanik Center for Probability and Mathematical Statistics, and is sponsored jointly by the Faculty of Mathematics and Computer Science of University of Wrocław and the Faculty of Pure and Applied Mathematics of Wrocław University of Science and Technology. The purpose of the journal is to publish original contributions to the theory of probability and mathematical statistics.