Generalizations of the fourth moment theorem

IF 0.4 4区 数学 Q4 STATISTICS & PROBABILITY
Nobuaki Naganuma
{"title":"Generalizations of the fourth moment theorem","authors":"Nobuaki Naganuma","doi":"10.37190/0208-4147.00060","DOIUrl":null,"url":null,"abstract":". Azmoodeh et al. established a criterion regarding convergence of the second and other even moments of random variables in a Wiener chaos with fixed order guaranteeing the central convergence of the random variables. This was a major step in studies of the fourth moment theorem. In this paper, we provide further generalizations of the fourth moment theorem by building on their ideas. More precisely, further criteria implying central convergence are provided: (i) the convergence of the fourth and any other even moment, (ii) the convergence of the sixth and some other even moments.","PeriodicalId":48996,"journal":{"name":"Probability and Mathematical Statistics-Poland","volume":null,"pages":null},"PeriodicalIF":0.4000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Probability and Mathematical Statistics-Poland","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.37190/0208-4147.00060","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

Abstract

. Azmoodeh et al. established a criterion regarding convergence of the second and other even moments of random variables in a Wiener chaos with fixed order guaranteeing the central convergence of the random variables. This was a major step in studies of the fourth moment theorem. In this paper, we provide further generalizations of the fourth moment theorem by building on their ideas. More precisely, further criteria implying central convergence are provided: (i) the convergence of the fourth and any other even moment, (ii) the convergence of the sixth and some other even moments.
第四矩定理的推广
. Azmoodeh等人建立了固定阶Wiener混沌中随机变量二阶偶矩及其他偶矩收敛的判据,保证了随机变量的中心收敛。这是研究第四矩定理的重要一步。在本文中,我们在他们的思想的基础上提供了第四矩定理的进一步推广。更准确地说,提供了进一步的中心收敛准则:(i)第四偶矩和任何其他偶矩的收敛性,(ii)第六偶矩和其他一些偶矩的收敛性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.70
自引率
0.00%
发文量
0
审稿时长
>12 weeks
期刊介绍: PROBABILITY AND MATHEMATICAL STATISTICS is published by the Kazimierz Urbanik Center for Probability and Mathematical Statistics, and is sponsored jointly by the Faculty of Mathematics and Computer Science of University of Wrocław and the Faculty of Pure and Applied Mathematics of Wrocław University of Science and Technology. The purpose of the journal is to publish original contributions to the theory of probability and mathematical statistics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信