Predictıve Modelıng of Yarn Quality at Ring Spinning Machine using Resilient Back Propogation Neural Networks

IF 0.6 4区 工程技术 Q4 MATERIALS SCIENCE, TEXTILES
A. Farooq, Nayab Khan, Farida Irshad, Usama Nasir
{"title":"Predictıve Modelıng of Yarn Quality at Ring Spinning Machine using Resilient Back Propogation Neural Networks","authors":"A. Farooq, Nayab Khan, Farida Irshad, Usama Nasir","doi":"10.32710/tekstilvekonfeksiyon.904406","DOIUrl":null,"url":null,"abstract":"The final attenuation and twisting of fiber take place at ring spinning machine and hence its optimized performance is very crucial in terms of yarn quality. Drafting at ring spinning machine has a decisive effect on quality. There exist many influencing parameters in the spinning geometry that have to be optimized for manufacturing of quality yarn. The present research work was carried out to develop the Artificial neural networks (ANN) based prediction model for the polyester/cotton blended ring spun yarns by using these influencing parameters as inputs. ANN prediction model was developed using resilient backpropogation algorithm. Yarn quality parameters like yarn evenness, hairiness and tensile parameters were predicted. The low mean absolute error values for the yarn quality parameters proved that it is possible to predict the yarn quality on the basis of spinning geometry for cotton/polyester blended ring spun yarns using Resilient Back Propogation Neural Networks.","PeriodicalId":22221,"journal":{"name":"Tekstil Ve Konfeksiyon","volume":"1 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2022-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tekstil Ve Konfeksiyon","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.32710/tekstilvekonfeksiyon.904406","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, TEXTILES","Score":null,"Total":0}
引用次数: 0

Abstract

The final attenuation and twisting of fiber take place at ring spinning machine and hence its optimized performance is very crucial in terms of yarn quality. Drafting at ring spinning machine has a decisive effect on quality. There exist many influencing parameters in the spinning geometry that have to be optimized for manufacturing of quality yarn. The present research work was carried out to develop the Artificial neural networks (ANN) based prediction model for the polyester/cotton blended ring spun yarns by using these influencing parameters as inputs. ANN prediction model was developed using resilient backpropogation algorithm. Yarn quality parameters like yarn evenness, hairiness and tensile parameters were predicted. The low mean absolute error values for the yarn quality parameters proved that it is possible to predict the yarn quality on the basis of spinning geometry for cotton/polyester blended ring spun yarns using Resilient Back Propogation Neural Networks.
利用弹性反向传播神经网络对环锭纺纱机纱线质量的影响Predictıve Modelıng
纤维的最终衰减和加捻发生在环锭纺纱机,因此环锭纺纱机性能的优化对成纱质量至关重要。环锭纺纱机牵伸对产品质量有决定性的影响。纺纱几何形状中存在许多影响纺纱质量的参数,需要对其进行优化。本研究以这些影响参数为输入,建立了基于人工神经网络(ANN)的涤棉混纺环锭纱预测模型。采用弹性反向传播算法建立了人工神经网络预测模型。对纱线条干、毛羽、拉伸等纱线质量参数进行了预测。纱线质量参数的平均绝对误差较低,证明了利用弹性反向传播神经网络在纺纱几何形状的基础上预测棉涤混纺环锭纱的纱线质量是可行的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Tekstil Ve Konfeksiyon
Tekstil Ve Konfeksiyon 工程技术-材料科学:纺织
CiteScore
1.40
自引率
33.30%
发文量
41
审稿时长
>12 weeks
期刊介绍: Tekstil ve Konfeksiyon, publishes papers on both fundamental and applied research in various branches of apparel and textile technology and allied areas such as production and properties of natural and synthetic fibers, yarns and fabrics, technical textiles, finishing applications, garment technology, analysis, testing, and quality control.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信