A Novel Industrial Application of CNN Approach: Real Time Fabric Inspection and Defect Classification on Circular Knitting Machine

IF 0.6 4区 工程技术 Q4 MATERIALS SCIENCE, TEXTILES
H. Çelik, L. Dülger, Burak Öztaş, Mehmet Kertmen, Elif Gülteki̇n
{"title":"A Novel Industrial Application of CNN Approach: Real Time Fabric Inspection and Defect Classification on Circular Knitting Machine","authors":"H. Çelik, L. Dülger, Burak Öztaş, Mehmet Kertmen, Elif Gülteki̇n","doi":"10.32710/tekstilvekonfeksiyon.1017016","DOIUrl":null,"url":null,"abstract":"Fabric Automatic Visual Inspection (FAVI) system provides reliable performance on fabric defects inspection. This study presents a machine vision system developed to adapt in circular knitting machines where fabric defects can be automatically controlled and detected defects can be classified. The knitted fabric surface are detected during real-time manufacturing. For the classification process, three different transfer learning architectures (ResNet-50, AlexNet, GoogLeNet) have been applied. The five common knitted fabric defects were recognized with the artificial intelligence-based software and classified with an average success rate of 98% using ResNet-50 architecture. The success rates of the trained networks were compared.","PeriodicalId":22221,"journal":{"name":"Tekstil Ve Konfeksiyon","volume":"1 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2022-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tekstil Ve Konfeksiyon","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.32710/tekstilvekonfeksiyon.1017016","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, TEXTILES","Score":null,"Total":0}
引用次数: 0

Abstract

Fabric Automatic Visual Inspection (FAVI) system provides reliable performance on fabric defects inspection. This study presents a machine vision system developed to adapt in circular knitting machines where fabric defects can be automatically controlled and detected defects can be classified. The knitted fabric surface are detected during real-time manufacturing. For the classification process, three different transfer learning architectures (ResNet-50, AlexNet, GoogLeNet) have been applied. The five common knitted fabric defects were recognized with the artificial intelligence-based software and classified with an average success rate of 98% using ResNet-50 architecture. The success rates of the trained networks were compared.
CNN方法的一种新型工业应用:圆型针织机上织物实时检测与缺陷分类
织物自动视觉检测系统(FAVI)为织物疵点检测提供了可靠的性能。本文提出了一种适用于圆型针织机的机器视觉系统,该系统可以自动控制织物疵点并对检测到的疵点进行分类。在生产过程中对针织物表面进行实时检测。对于分类过程,应用了三种不同的迁移学习架构(ResNet-50, AlexNet, GoogLeNet)。采用基于人工智能的软件对五种常见的针织物缺陷进行识别,并采用ResNet-50架构进行分类,平均成功率为98%。比较了训练后网络的成功率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Tekstil Ve Konfeksiyon
Tekstil Ve Konfeksiyon 工程技术-材料科学:纺织
CiteScore
1.40
自引率
33.30%
发文量
41
审稿时长
>12 weeks
期刊介绍: Tekstil ve Konfeksiyon, publishes papers on both fundamental and applied research in various branches of apparel and textile technology and allied areas such as production and properties of natural and synthetic fibers, yarns and fabrics, technical textiles, finishing applications, garment technology, analysis, testing, and quality control.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信