Hybrid multimode - multicore fibre based holographic endoscope for deep-tissue neurophotonics

Yang Du, S. Turtaev, I. Leite, A. Lorenz, J. Kobelke, K. Wondraczek, T. Čižmár
{"title":"Hybrid multimode - multicore fibre based holographic endoscope for deep-tissue neurophotonics","authors":"Yang Du, S. Turtaev, I. Leite, A. Lorenz, J. Kobelke, K. Wondraczek, T. Čižmár","doi":"10.37188/lam.2022.029","DOIUrl":null,"url":null,"abstract":"In-vivo microendoscopy in animal models became a groundbreaking technique in neuroscience that rapidly expands our understanding of the brain. Emerging hair-thin endoscopes based on multimode fibres are now opening up the prospect of ultra-minimally invasive neuroimaging of deeply located brain structures. Complementing these advancements with methods of functional imaging and optogenetics, as well as extending its applicability to awake and motile animals constitute the most pressing challenges for this technology. Here we demonstrate a novel fibre design capable of both, high-resolution imaging in immobilised animals and bending-resilient optical addressing of neurons in motile animals. The optimised refractive index profile and the probe structure allowed reaching a spatial resolution of 2 μm across a 230 μm field of view for the initial layout of the fibre. Simultaneously, the fibre exhibits negligible cross-talk between individual inner-cores during fibre deformation. This work provides a technological solution for imaging-assisted spatially selective photo-activation and activity monitoring in awake and freely moving animal models.","PeriodicalId":56519,"journal":{"name":"光:先进制造(英文)","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"光:先进制造(英文)","FirstCategoryId":"1087","ListUrlMain":"https://doi.org/10.37188/lam.2022.029","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

In-vivo microendoscopy in animal models became a groundbreaking technique in neuroscience that rapidly expands our understanding of the brain. Emerging hair-thin endoscopes based on multimode fibres are now opening up the prospect of ultra-minimally invasive neuroimaging of deeply located brain structures. Complementing these advancements with methods of functional imaging and optogenetics, as well as extending its applicability to awake and motile animals constitute the most pressing challenges for this technology. Here we demonstrate a novel fibre design capable of both, high-resolution imaging in immobilised animals and bending-resilient optical addressing of neurons in motile animals. The optimised refractive index profile and the probe structure allowed reaching a spatial resolution of 2 μm across a 230 μm field of view for the initial layout of the fibre. Simultaneously, the fibre exhibits negligible cross-talk between individual inner-cores during fibre deformation. This work provides a technological solution for imaging-assisted spatially selective photo-activation and activity monitoring in awake and freely moving animal models.
基于混合多模多芯光纤的深层神经光子学全息内窥镜
动物模型的体内显微内窥镜成为神经科学领域的一项突破性技术,它迅速扩展了我们对大脑的理解。新出现的基于多模纤维的头发般细的内窥镜,为深部脑结构的超微创神经成像开辟了前景。用功能成像和光遗传学的方法来补充这些进步,以及将其应用于清醒和活动的动物,构成了这项技术最紧迫的挑战。在这里,我们展示了一种新的纤维设计,既能在静止动物中进行高分辨率成像,又能在运动动物中对神经元进行弯曲弹性光学寻址。优化后的折射率分布和探头结构使得光纤初始布局在230 μm视场内的空间分辨率达到2 μm。同时,在纤维变形过程中,纤维内部芯间的串扰可以忽略不计。这项工作为在清醒和自由运动的动物模型中成像辅助的空间选择性光激活和活动监测提供了技术解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
10.90
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信