Use of Padé Approximants to Estimate the Rayleigh Wave Speed

A. Spathis
{"title":"Use of Padé Approximants to Estimate the Rayleigh Wave Speed","authors":"A. Spathis","doi":"10.3888/TMJ.17-1","DOIUrl":null,"url":null,"abstract":"There exists a range of explicit and approximate solutions to the cubic polynomial Rayleigh equation for the speed of surface waves across an elastic half-space. This article presents an alternative approach that uses Pade approximants to estimate the Rayleigh wave speed with five different approximations derived for two expansions about different points. Maximum relative absolute errors of between 0.34% and 0.00011% occur for the full range of the Poisson ratio from -1 to 0.5. Even smaller errors occur when the Poisson ratio is restricted within a range of 0 to 0.5. For higher-order approximants, the derived expressions for the Rayleigh wave speed are more accurate than previously published solutions, but incur a slight cost in extra arithmetic operations, depending on the desired accuracy.","PeriodicalId":91418,"journal":{"name":"The Mathematica journal","volume":"17 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2015-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Mathematica journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3888/TMJ.17-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

There exists a range of explicit and approximate solutions to the cubic polynomial Rayleigh equation for the speed of surface waves across an elastic half-space. This article presents an alternative approach that uses Pade approximants to estimate the Rayleigh wave speed with five different approximations derived for two expansions about different points. Maximum relative absolute errors of between 0.34% and 0.00011% occur for the full range of the Poisson ratio from -1 to 0.5. Even smaller errors occur when the Poisson ratio is restricted within a range of 0 to 0.5. For higher-order approximants, the derived expressions for the Rayleigh wave speed are more accurate than previously published solutions, but incur a slight cost in extra arithmetic operations, depending on the desired accuracy.
利用帕岱尔近似估计瑞利波速度
弹性半空间表面波速度的三次多项式瑞利方程存在一系列显式和近似解。本文提出了一种替代方法,该方法使用Pade近似来估计瑞利波速,并对不同点的两个展开导出了五种不同的近似。泊松比从-1到0.5的整个范围内,最大相对绝对误差在0.34%到0.00011%之间。当泊松比限制在0到0.5的范围内时,甚至会发生更小的误差。对于高阶近似,导出的瑞利波速表达式比以前发表的解更准确,但根据所需的精度,在额外的算术运算中会产生轻微的成本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信