Fitting Data with Different Error Models

B. Paláncz
{"title":"Fitting Data with Different Error Models","authors":"B. Paláncz","doi":"10.3888/TMJ.16-4","DOIUrl":null,"url":null,"abstract":"A maximum likelihood estimator has been applied to find regression parameters of a straight line in case of different error models. Assuming Gaussian-type noise for the measurement errors, explicit results for the parameters can be given employing Mathematica. In the case of the ordinary least squares (OLSy), total least squares (TLS), and least geometric mean deviation (LGMD) approaches, as well as the error model of combining ordinary least squares (OLSx and OLSy) in the Pareto sense, simple formulas are given to compute the parameters via a reduced Gröbner basis. Numerical examples illustrate the methods, and the results are checked via direct global minimization of the residuals.","PeriodicalId":91418,"journal":{"name":"The Mathematica journal","volume":"16 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2014-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Mathematica journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3888/TMJ.16-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

A maximum likelihood estimator has been applied to find regression parameters of a straight line in case of different error models. Assuming Gaussian-type noise for the measurement errors, explicit results for the parameters can be given employing Mathematica. In the case of the ordinary least squares (OLSy), total least squares (TLS), and least geometric mean deviation (LGMD) approaches, as well as the error model of combining ordinary least squares (OLSx and OLSy) in the Pareto sense, simple formulas are given to compute the parameters via a reduced Gröbner basis. Numerical examples illustrate the methods, and the results are checked via direct global minimization of the residuals.
用不同误差模型拟合数据
用极大似然估计方法求出不同误差模型下直线的回归参数。假设测量误差为高斯型噪声,使用Mathematica可以给出参数的显式结果。对于普通最小二乘(OLSy)、总最小二乘(TLS)和最小几何平均偏差(LGMD)方法,以及Pareto意义下普通最小二乘(OLSx和OLSy)相结合的误差模型,给出了通过简化Gröbner基计算参数的简单公式。数值算例说明了该方法,并通过残差的直接全局最小化对结果进行了验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信