Clusters Produced by Placing Rhombic Triacontahedra at the Vertices of Polyhedra

S. Kabai, S. Bérczi, L. Szilassi
{"title":"Clusters Produced by Placing Rhombic Triacontahedra at the Vertices of Polyhedra","authors":"S. Kabai, S. Bérczi, L. Szilassi","doi":"10.3888/TMJ.14-14","DOIUrl":null,"url":null,"abstract":"In this article we explore possible clusters of rhombic triacontahedra (RTs), usually by connecting them face to face, which happens when they are placed at the vertices of certain polyhedra. The edge length of such polyhedra is set to be twice the distance of a face of an RT from the origin (about 2.7527). The clusters thus produced can be used to build further clusters using an RT and a rhombic hexecontahedron (RH), the logo of Wolfram|Alpha. We briefly look at other kinds of connections and produce new clusters from old by using matching polyhedra instead of RTs.","PeriodicalId":91418,"journal":{"name":"The Mathematica journal","volume":"14 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2012-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Mathematica journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3888/TMJ.14-14","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this article we explore possible clusters of rhombic triacontahedra (RTs), usually by connecting them face to face, which happens when they are placed at the vertices of certain polyhedra. The edge length of such polyhedra is set to be twice the distance of a face of an RT from the origin (about 2.7527). The clusters thus produced can be used to build further clusters using an RT and a rhombic hexecontahedron (RH), the logo of Wolfram|Alpha. We briefly look at other kinds of connections and produce new clusters from old by using matching polyhedra instead of RTs.
在多面体的顶点放置菱形三面体所产生的簇
在本文中,我们探索了菱形三acontahedra (RTs)的可能簇,通常是通过将它们面对面地连接在一起,当它们被放置在某些多面体的顶点时就会发生这种情况。这样的多面体的边缘长度被设置为RT的一个面到原点的距离的两倍(约2.7527)。由此产生的簇可以用于使用RT和菱形六面体(RH)构建进一步的簇,RH是Wolfram|Alpha的标志。我们简要地看看其他类型的连接,并通过使用匹配多面体而不是RTs从旧的集群中产生新的集群。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信