{"title":"Negative Binomial Regression","authors":"Michael L. Zwilling","doi":"10.3888/TMJ.15-6","DOIUrl":null,"url":null,"abstract":"where m > 0 is the mean of Y and a > 0 is the heterogeneity parameter. Hilbe [1] derives this parametrization as a Poisson-gamma mixture, or alternatively as the number of failures before the H1 e aLth success, though we will not require 1 e a to be an integer. The traditional negative binomial regression model, designated the NB2 model in [1], is (2) ln m = b0 + b1 x1 + b2 x2 +o⋯+ bp xp, where the predictor variables x1, x2, ..., xp are given, and the population regression coefficients b0, b1, b2, ..., bp are to be estimated. Given a random sample of n subjects, we observe for subject i the dependent variable yi and the predictor variables x1i, x2i, ..., xpi. Utilizing vector and matrix notation, we let b = H b0 b1 b2 o⋯ bp L¬, and we gather the predictor data into the design matrix X as follows:","PeriodicalId":91418,"journal":{"name":"The Mathematica journal","volume":"15 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2013-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Mathematica journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3888/TMJ.15-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10
Abstract
where m > 0 is the mean of Y and a > 0 is the heterogeneity parameter. Hilbe [1] derives this parametrization as a Poisson-gamma mixture, or alternatively as the number of failures before the H1 e aLth success, though we will not require 1 e a to be an integer. The traditional negative binomial regression model, designated the NB2 model in [1], is (2) ln m = b0 + b1 x1 + b2 x2 +o⋯+ bp xp, where the predictor variables x1, x2, ..., xp are given, and the population regression coefficients b0, b1, b2, ..., bp are to be estimated. Given a random sample of n subjects, we observe for subject i the dependent variable yi and the predictor variables x1i, x2i, ..., xpi. Utilizing vector and matrix notation, we let b = H b0 b1 b2 o⋯ bp L¬, and we gather the predictor data into the design matrix X as follows: