The Walker Function

M. Mikhailov, A. Freire
{"title":"The Walker Function","authors":"M. Mikhailov, A. Freire","doi":"10.3888/TMJ.14-11","DOIUrl":null,"url":null,"abstract":"The quantitative description of turbulent flows is known to be severely hampered by the extremely rapid variations in the mean and higher-order statistics in the near-wall region. Some very early studies [1, 2, 3] showed that the basic structure of an attached turbulent boundary layer consists of a viscous wall layer, in which the turbulent and laminar stresses are of comparable magnitude, and a defect layer, in which the velocity profile may be expressed in terms of a small perturbation to the external flow solution [4]. Also, [1, 2, 3] showed that this structure naturally leads to a universal velocity solution that has logarithmic behavior and depends on the velocity and length scales based on the friction velocity.","PeriodicalId":91418,"journal":{"name":"The Mathematica journal","volume":"14 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2012-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Mathematica journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3888/TMJ.14-11","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

The quantitative description of turbulent flows is known to be severely hampered by the extremely rapid variations in the mean and higher-order statistics in the near-wall region. Some very early studies [1, 2, 3] showed that the basic structure of an attached turbulent boundary layer consists of a viscous wall layer, in which the turbulent and laminar stresses are of comparable magnitude, and a defect layer, in which the velocity profile may be expressed in terms of a small perturbation to the external flow solution [4]. Also, [1, 2, 3] showed that this structure naturally leads to a universal velocity solution that has logarithmic behavior and depends on the velocity and length scales based on the friction velocity.
步行者功能
众所周知,湍流的定量描述受到近壁区域中平均值和高阶统计量的极快变化的严重阻碍。一些非常早期的研究[1,2,3]表明,附着湍流边界层的基本结构由粘性壁面层和缺陷层组成,其中的湍流和层流应力大小相当,缺陷层的速度分布可以用对外部流动解[4]的小扰动来表示。此外,[1,2,3]表明,这种结构自然导致具有对数行为的通用速度解,并取决于基于摩擦速度的速度和长度尺度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信