Drug Repurposing Approach Targeting Main Protease Using HTVS and Pharmacophoric Mapping: Exceptional Reassuring Itinerary for Most Insolvent Anti-SARS-CoV-2 Drug

V. Bastikar, Pramodkumar P. Gupta, J. Sangshetti, Alpana Bastikar, S. Chhajed
{"title":"Drug Repurposing Approach Targeting Main Protease Using HTVS and Pharmacophoric Mapping: Exceptional Reassuring Itinerary for Most Insolvent Anti-SARS-CoV-2 Drug","authors":"V. Bastikar, Pramodkumar P. Gupta, J. Sangshetti, Alpana Bastikar, S. Chhajed","doi":"10.35248/0974-276X.21.14.527","DOIUrl":null,"url":null,"abstract":"Coronavirus pandemic COVID 19 has caused a wide range of harm worldwide with its inception in December 2019 in Wuhan, China. Till date there is no promising drug identified for the treatment of disease. In the view of this, scientists have elucidated X-ray structures of the proteins in SARS-CoV-2 virus. These can act as probable drug targets for the designing of drugs which is urgent need. One of the main proteins of the virus is its main protease Mpro which is responsible for producing polyproteins of the virus. In this study we have used main protease as the target for drug design and repurposing for COVID-19. Two approaches were applied in order to develop a fast and effective treatment against the virus. Drug repurposing through in-silico docking analysis of existing FDA approved drugs was one method and high throughput screening of molecules from the ZINC database against main protease was the other technique applied. Two docking protocols were utilized- a fast docking algorithm to screen the hits or lead molecules followed by simulation based molecular dynamics docking procedure to optimize the obtained hits. We could observe a definite scaffold based binding affinity against the main protease. These scaffolds were lutein, steroids, morphine and quinolone, CPT. Thiotepa was identified as the best docked molecule with highest binding affinity. Unique molecules like lutein, beta carotene, Buprenorphine etc. were identified which can be used as repurposed drugs against SARS-CoV-2. Also these scaffolds show unique pharmacophores which can be utilized to design potential novel leads against SARS-CoV-2 for future treatment.","PeriodicalId":73911,"journal":{"name":"Journal of proteomics & bioinformatics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of proteomics & bioinformatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.35248/0974-276X.21.14.527","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Coronavirus pandemic COVID 19 has caused a wide range of harm worldwide with its inception in December 2019 in Wuhan, China. Till date there is no promising drug identified for the treatment of disease. In the view of this, scientists have elucidated X-ray structures of the proteins in SARS-CoV-2 virus. These can act as probable drug targets for the designing of drugs which is urgent need. One of the main proteins of the virus is its main protease Mpro which is responsible for producing polyproteins of the virus. In this study we have used main protease as the target for drug design and repurposing for COVID-19. Two approaches were applied in order to develop a fast and effective treatment against the virus. Drug repurposing through in-silico docking analysis of existing FDA approved drugs was one method and high throughput screening of molecules from the ZINC database against main protease was the other technique applied. Two docking protocols were utilized- a fast docking algorithm to screen the hits or lead molecules followed by simulation based molecular dynamics docking procedure to optimize the obtained hits. We could observe a definite scaffold based binding affinity against the main protease. These scaffolds were lutein, steroids, morphine and quinolone, CPT. Thiotepa was identified as the best docked molecule with highest binding affinity. Unique molecules like lutein, beta carotene, Buprenorphine etc. were identified which can be used as repurposed drugs against SARS-CoV-2. Also these scaffolds show unique pharmacophores which can be utilized to design potential novel leads against SARS-CoV-2 for future treatment.
利用HTVS和药效学作图靶向主要蛋白酶的药物重新利用方法:大多数破产抗sars - cov -2药物的特殊可靠行程
冠状病毒大流行COVID - 19自2019年12月在中国武汉爆发以来,在全球范围内造成了广泛的危害。到目前为止,还没有发现有希望治疗疾病的药物。鉴于此,科学家们已经阐明了SARS-CoV-2病毒蛋白质的x射线结构。这些可以作为药物设计急需的可能靶点。该病毒的主要蛋白质之一是其主要蛋白酶Mpro,它负责产生病毒的多蛋白。在本研究中,我们将主要蛋白酶作为新冠病毒药物设计和再利用的靶点。为了开发一种快速有效的病毒治疗方法,采用了两种方法。通过对现有FDA批准的药物进行计算机对接分析来进行药物再利用是一种方法,另一种方法是对锌数据库中针对主要蛋白酶的分子进行高通量筛选。采用两种对接方案——快速对接算法筛选命中点或先导分子,基于模拟的分子动力学对接程序优化获得的命中点。我们可以观察到明确的基于支架的对主要蛋白酶的结合亲和力。这些支架是叶黄素,类固醇,吗啡和喹诺酮,CPT。Thiotepa是最佳的对接分子,具有最高的结合亲和力。发现了叶黄素、β -胡萝卜素、丁丙诺啡等独特分子,可作为抗SARS-CoV-2的靶向药物。此外,这些支架显示出独特的药效团,可用于设计潜在的针对SARS-CoV-2的新型导联剂,用于未来的治疗。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
文献相关原料
公司名称 产品信息 采购帮参考价格
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信