Motion of a Spinning Top

J. Vrbik
{"title":"Motion of a Spinning Top","authors":"J. Vrbik","doi":"10.3888/TMJ.14-4","DOIUrl":null,"url":null,"abstract":"A quaternion is a four-dimensional quantity consisting of a scalar, say A, and a threedimensional vector a, collectively denoted A a HA, aL. Addition of two quaternions is component-wise, (1) HA, aLÅ⊕ HB, bL = HA+ B, a+ bL, (we do not need to add quaternions in this article). Their multiplication follows the rule (2) HA, aLÄ⊗ HB, bL = HA Ba ÿ b , A b+ B aaäbL. It is important to note that such multiplication is associative (even though noncommutative). This can be verified by the following. 8A_, a_<Î8B_, b_< := 8A B a.b, A b + B a aäb< êê TrigReduce êê Simplify H8A, 8a1, a2, a3<<Î8B, 8b1, b2, b3<<LÎ8C, 8c1, c2, c3<< 8A, 8a1, a2, a3<<ÎH8B, 8b1, b2, b3<<Î8C, 8c1, c2, c3<<L êê Expand 80, 80, 0, 0<<","PeriodicalId":91418,"journal":{"name":"The Mathematica journal","volume":"14 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2012-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Mathematica journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3888/TMJ.14-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

A quaternion is a four-dimensional quantity consisting of a scalar, say A, and a threedimensional vector a, collectively denoted A a HA, aL. Addition of two quaternions is component-wise, (1) HA, aLÅ⊕ HB, bL = HA+ B, a+ bL, (we do not need to add quaternions in this article). Their multiplication follows the rule (2) HA, aLÄ⊗ HB, bL = HA Ba ÿ b , A b+ B aaäbL. It is important to note that such multiplication is associative (even though noncommutative). This can be verified by the following. 8A_, a_<Î8B_, b_< := 8A B a.b, A b + B a aäb< êê TrigReduce êê Simplify H8A, 8a1, a2, a3<<Î8B, 8b1, b2, b3<
陀螺的运动
四元数是由标量A和三维向量A组成的四维量,统称为AA HA, aL。两个四元数的相加是组件式的,(1)HA, aLÅ⊕HB, bL = HA+ B, A+ bL,(本文中我们不需要添加四元数)。它们的乘法符合(2)HA, aLÄ⊗HB, bL = HA Ba¾b, A b+ b aaäbL。重要的是要注意,这种乘法是结合的(即使是非交换的)。这可以通过以下方式进行验证。8现代,现代< I8B_, b_ < = 8 B a.b, B + B艺术展< ee TrigReduce ee简化H8A 8 a1, a2, a3 < < I8B 8 b1、b2、b3 < < LI8C 8 c1, c2, c3 < < 8 8 a1, a2, a3 < < IH8B 8 b1、b2、b3 < < I8C 8 c1, c2, c3 < < L ee扩大80、80、0、0 < <
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信