Search for Hamiltonian Cycles

Csongor György Csehi, J. Tóth
{"title":"Search for Hamiltonian Cycles","authors":"Csongor György Csehi, J. Tóth","doi":"10.3888/TMJ.13-7","DOIUrl":null,"url":null,"abstract":"Determining whether Hamiltonian cycles exist in graphs is an NP-complete problem, so it is no wonder that the Combinatorica function HamiltonianCycle is slow for large graphs. Theorems by Dirac, Ore, Pósa, and Chvátal provide sufficient conditions that are easy to check for the existence of such cycles. This article provides Mathematica programs for those conditions, thus extending the capability of HamiltonianQ, which only tests the biconnectivity—a simple necessary condition—of a given graph. We also investigate experimentally the limiting behavior of whether the conditions are fulfilled for large random graphs. The phenomenon seen is proved as a theorem, closely related to earlier results by Karp and Pósa.","PeriodicalId":91418,"journal":{"name":"The Mathematica journal","volume":"13 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2011-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Mathematica journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3888/TMJ.13-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Determining whether Hamiltonian cycles exist in graphs is an NP-complete problem, so it is no wonder that the Combinatorica function HamiltonianCycle is slow for large graphs. Theorems by Dirac, Ore, Pósa, and Chvátal provide sufficient conditions that are easy to check for the existence of such cycles. This article provides Mathematica programs for those conditions, thus extending the capability of HamiltonianQ, which only tests the biconnectivity—a simple necessary condition—of a given graph. We also investigate experimentally the limiting behavior of whether the conditions are fulfilled for large random graphs. The phenomenon seen is proved as a theorem, closely related to earlier results by Karp and Pósa.
寻找哈密顿环
确定图中是否存在哈密顿环是一个np完全问题,因此对于大型图,组合函数哈密顿环速度很慢也就不足为奇了。狄拉克、奥雷、Pósa和Chvátal的定理提供了容易检验这种循环是否存在的充分条件。本文提供了用于这些条件的Mathematica程序,从而扩展了HamiltonianQ的功能,HamiltonianQ仅测试给定图的双连通性(一个简单的必要条件)。我们还通过实验研究了大型随机图是否满足条件的极限行为。所看到的现象被证明为一个定理,与Karp和Pósa早先的结果密切相关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信