MathPDE: A Package to Solve PDEs by Finite Differences

K. Sheshadri, P. Fritzson
{"title":"MathPDE: A Package to Solve PDEs by Finite Differences","authors":"K. Sheshadri, P. Fritzson","doi":"10.3888/TMJ.13-20","DOIUrl":null,"url":null,"abstract":"A package for solving time-dependent partial differential equations (PDEs), MathPDE, is presented. It implements finite-difference methods. After making a sequence of symbolic transformations on the PDE and its initial and boundary conditions, MathPDE automatically generates a problem-specific set of Mathematica functions to solve the numerical problem, which is essentially a system of algebraic equations. MathPDE then internally calls MathCode, a Mathematica-to-C++ code generator, to generate a C++ program for solving the algebraic problem, and compiles it into an executable that can be run via MathLink. When the algebraic system is nonlinear, the Newton-Raphson method is used and SuperLU, a library for sparse systems, is used for matrix operations. This article discusses the wide range of PDEs that can be handled by MathPDE, the accuracy of the finite-difference schemes used, and importantly, the ability to handle both regular and irregular spatial domains. Since a standalone C++ program is generated to compute the numerical solution, the package offers portability.","PeriodicalId":91418,"journal":{"name":"The Mathematica journal","volume":"13 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2011-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Mathematica journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3888/TMJ.13-20","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

A package for solving time-dependent partial differential equations (PDEs), MathPDE, is presented. It implements finite-difference methods. After making a sequence of symbolic transformations on the PDE and its initial and boundary conditions, MathPDE automatically generates a problem-specific set of Mathematica functions to solve the numerical problem, which is essentially a system of algebraic equations. MathPDE then internally calls MathCode, a Mathematica-to-C++ code generator, to generate a C++ program for solving the algebraic problem, and compiles it into an executable that can be run via MathLink. When the algebraic system is nonlinear, the Newton-Raphson method is used and SuperLU, a library for sparse systems, is used for matrix operations. This article discusses the wide range of PDEs that can be handled by MathPDE, the accuracy of the finite-difference schemes used, and importantly, the ability to handle both regular and irregular spatial domains. Since a standalone C++ program is generated to compute the numerical solution, the package offers portability.
MathPDE:一个用有限差分求解偏微分方程的包
提出了一个求解时变偏微分方程(PDEs)的程序包MathPDE。它实现了有限差分方法。在对PDE及其初始条件和边界条件进行一系列符号转换之后,MathPDE自动生成一组特定于问题的Mathematica函数来解决数值问题,该数值问题本质上是一个代数方程系统。然后MathPDE在内部调用MathCode(一个从数学到c++的代码生成器)来生成一个用于解决代数问题的c++程序,并将其编译为可通过MathLink运行的可执行文件。当代数系统为非线性时,采用Newton-Raphson方法,并利用稀疏系统库SuperLU进行矩阵运算。本文讨论了MathPDE可以处理的各种pde、所使用的有限差分方案的准确性,以及重要的是,处理规则和不规则空间域的能力。由于生成了一个独立的c++程序来计算数值解,因此该包提供了可移植性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信