A Symbolic Solution of a 3D Affine Transformation

B. Paláncz, Zaletnyik Piroska
{"title":"A Symbolic Solution of a 3D Affine Transformation","authors":"B. Paláncz, Zaletnyik Piroska","doi":"10.3888/TMJ.13-9","DOIUrl":null,"url":null,"abstract":"We demonstrate a symbolic elimination technique to solve a nine-parameter 3D affine transformation when only three known points in both systems are given. The system of nine equations is reduced to six by subtracting the equations and eliminating the translation parameters. From these six equations, five variables are eliminated using a Grobner basis to get a quadratic univariate polynomial, from which the solution can be expressed symbolically. The main advantage of this result is that we do not need to guess initial values of the nine parameters, which is necessary in the case of the traditional solution of the nonlinear system of equations. This result can be useful in geodesy, robotics, and photogrammetry when occasionally only three known points in both systems are given or when a Gauss‐ Jacobi combinatorial solution may be required for certain reasons, for example detecting outliers by using variancecovariance matrices.","PeriodicalId":91418,"journal":{"name":"The Mathematica journal","volume":"13 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2011-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Mathematica journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3888/TMJ.13-9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

We demonstrate a symbolic elimination technique to solve a nine-parameter 3D affine transformation when only three known points in both systems are given. The system of nine equations is reduced to six by subtracting the equations and eliminating the translation parameters. From these six equations, five variables are eliminated using a Grobner basis to get a quadratic univariate polynomial, from which the solution can be expressed symbolically. The main advantage of this result is that we do not need to guess initial values of the nine parameters, which is necessary in the case of the traditional solution of the nonlinear system of equations. This result can be useful in geodesy, robotics, and photogrammetry when occasionally only three known points in both systems are given or when a Gauss‐ Jacobi combinatorial solution may be required for certain reasons, for example detecting outliers by using variancecovariance matrices.
三维仿射变换的符号解
我们展示了一种符号消去技术来解决一个九参数的三维仿射变换,当两个系统只给定三个已知点时。通过相减方程和消除平移参数,将九个方程的系统简化为六个。从这6个方程中,利用Grobner基消去5个变量,得到一个二次单变量多项式,其解可以用符号表示。该结果的主要优点是我们不需要猜测九个参数的初始值,而这在非线性方程组的传统解的情况下是必要的。这个结果在大地测量学、机器人和摄影测量学中非常有用,当两个系统中偶尔只有三个已知点被给定时,或者当由于某些原因可能需要高斯-雅可比组合解时,例如通过使用方差协方差矩阵检测异常值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信