On the Visualization of Riemann Surfaces

Simo Kivelä
{"title":"On the Visualization of Riemann Surfaces","authors":"Simo Kivelä","doi":"10.3888/TMJ.11.3-6","DOIUrl":null,"url":null,"abstract":"The graphs of complex-valued functions f :  Ø  or functions of the type f : 2 Ø 2 are in general two-dimensional manifolds in the space 4. The article presents a method for the visualization of such a graph. The graph is first projected to three-dimensional space with parallel projection and the image~the surface in three-dimensional space~is rendered on the screen in the usual way. The visualization can be improved in two ways: the graph can be rotated in four-dimensional space or the direction line of the projection can be changed, which means that the observer flies around the graph in four dimensions. The animation and manipulation capabilities of Mathematica are appropriate tools for the purpose.","PeriodicalId":91418,"journal":{"name":"The Mathematica journal","volume":"11 1","pages":"392-403"},"PeriodicalIF":0.0000,"publicationDate":"2010-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Mathematica journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3888/TMJ.11.3-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

The graphs of complex-valued functions f :  Ø  or functions of the type f : 2 Ø 2 are in general two-dimensional manifolds in the space 4. The article presents a method for the visualization of such a graph. The graph is first projected to three-dimensional space with parallel projection and the image~the surface in three-dimensional space~is rendered on the screen in the usual way. The visualization can be improved in two ways: the graph can be rotated in four-dimensional space or the direction line of the projection can be changed, which means that the observer flies around the graph in four dimensions. The animation and manipulation capabilities of Mathematica are appropriate tools for the purpose.
黎曼曲面的可视化研究
复值函数f:Ø或f:2 Ø2的图是空间4中的一般二维流形。本文提出了一种将这种图形可视化的方法。首先用平行投影的方法将图形投影到三维空间,然后用通常的方法将图像(三维空间中的表面)呈现在屏幕上。可以通过两种方式改善可视化:在四维空间中旋转图形或改变投影的方向线,即观察者在四维空间中绕图形飞行。Mathematica的动画和操作功能是实现这一目的的合适工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信