Influence of Water Stability on Bond Performance Between Magnesium Phosphate Cement Mortar and Steel Fibre

Q2 Engineering
H. Feng, Guanghui Liu, J. Yuan, M. Sheikh, F. Lu, Jun Zhao
{"title":"Influence of Water Stability on Bond Performance Between Magnesium Phosphate Cement Mortar and Steel Fibre","authors":"H. Feng, Guanghui Liu, J. Yuan, M. Sheikh, F. Lu, Jun Zhao","doi":"10.32604/SDHM.2019.04864","DOIUrl":null,"url":null,"abstract":": The fibre pullout test was conducted to investigate the influence of the water stability on the bond behaviour between the Magnesium phosphate cement (MPC) matrix and the steel fibre. The composition of the MPC-matrix and the immersion age of the specimens are experimentally investigated. The average bond strength and the pullout energy are investigated by analysing the experimental results. In addition, the microscopic characteristics of the interface transition zone are investigated using scanning electron microscopy (SEM). The experimental results showed that the bond performance between the MPC-matrix and the steel fibre decreased significantly with the increase of the duration of immersion in water. The average bond strength between the steel fibre and the MPC-matrix reduced by more than 50% when the specimens were immersed in the water for 28 days. The effect of the water on the interface between the steel fibre and the MPC-matrix was found to be more significant compared to the composition of the MPC-matrix. In addition, the MgO-KH 2 PO 4 mole ratio of the MPC significantly influenced the water stability of the interface zone between the steel fibre and MPC-matrix.","PeriodicalId":35399,"journal":{"name":"SDHM Structural Durability and Health Monitoring","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SDHM Structural Durability and Health Monitoring","FirstCategoryId":"1087","ListUrlMain":"https://doi.org/10.32604/SDHM.2019.04864","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 1

Abstract

: The fibre pullout test was conducted to investigate the influence of the water stability on the bond behaviour between the Magnesium phosphate cement (MPC) matrix and the steel fibre. The composition of the MPC-matrix and the immersion age of the specimens are experimentally investigated. The average bond strength and the pullout energy are investigated by analysing the experimental results. In addition, the microscopic characteristics of the interface transition zone are investigated using scanning electron microscopy (SEM). The experimental results showed that the bond performance between the MPC-matrix and the steel fibre decreased significantly with the increase of the duration of immersion in water. The average bond strength between the steel fibre and the MPC-matrix reduced by more than 50% when the specimens were immersed in the water for 28 days. The effect of the water on the interface between the steel fibre and the MPC-matrix was found to be more significant compared to the composition of the MPC-matrix. In addition, the MgO-KH 2 PO 4 mole ratio of the MPC significantly influenced the water stability of the interface zone between the steel fibre and MPC-matrix.
水稳定性对磷酸镁水泥砂浆与钢纤维粘结性能的影响
:通过纤维拉拔试验研究了水稳定性对磷酸镁水泥(MPC)基体与钢纤维粘结行为的影响。实验研究了mpc基体的组成和试样的浸渍年龄。通过对实验结果的分析,研究了平均粘结强度和拉出能。此外,利用扫描电子显微镜(SEM)研究了界面过渡区的微观特征。实验结果表明,mpc -基体与钢纤维的粘结性能随着浸水时间的增加而显著降低。试样在水中浸泡28天后,钢纤维与mpc基体的平均粘结强度降低50%以上。与mpc -基体组成相比,水对钢纤维与mpc -基体界面的影响更为显著。此外,MPC的MgO-KH - 2 - po4摩尔比显著影响了钢纤维与MPC基体界面区的水稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
SDHM Structural Durability and Health Monitoring
SDHM Structural Durability and Health Monitoring Engineering-Building and Construction
CiteScore
2.40
自引率
0.00%
发文量
29
期刊介绍: In order to maintain a reasonable cost for large scale structures such as airframes, offshore structures, nuclear plants etc., it is generally accepted that improved methods for structural integrity and durability assessment are required. Structural Health Monitoring (SHM) had emerged as an active area of research for fatigue life and damage accumulation prognostics. This is important for design and maintains of new and ageing structures.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信