Hyperspectral image classification based on Monte Carlo feature reduction method

IF 0.6 4区 物理与天体物理 Q4 OPTICS
Z. Chun
{"title":"Hyperspectral image classification based on Monte Carlo feature reduction method","authors":"Z. Chun","doi":"10.3724/sp.j.1010.2013.00062","DOIUrl":null,"url":null,"abstract":"Hyperspectral image classification is an important research aspect of hyperspectral data analysis.Relevance vector machine(RVM) is widely utilized since it is not restricted to Mercer condition and does not have to set the penalty factor.Due to the high dimension of hyperspectral data,the classification accuracy is severely affected when there are few training samples.Feature reduction is a common method to deal with this phenomenon.However,most of the filter model based feature selection methods can not provide optimal feature selection number.This paper proposes to utilize the statistic estimation characteristic of Monte Carlo random experiments to calculate optimal feature reduction number and conduct hyperspectral image classification with relevance vector machine.Experimental results show the reliability of the feature reduction number calculated by Monte Carlo method.Compared with the classification of original data,there is a significant improvement in the classification accuracy with the feature reduction data.","PeriodicalId":50181,"journal":{"name":"红外与毫米波学报","volume":"1 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2013-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"红外与毫米波学报","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.3724/sp.j.1010.2013.00062","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 3

Abstract

Hyperspectral image classification is an important research aspect of hyperspectral data analysis.Relevance vector machine(RVM) is widely utilized since it is not restricted to Mercer condition and does not have to set the penalty factor.Due to the high dimension of hyperspectral data,the classification accuracy is severely affected when there are few training samples.Feature reduction is a common method to deal with this phenomenon.However,most of the filter model based feature selection methods can not provide optimal feature selection number.This paper proposes to utilize the statistic estimation characteristic of Monte Carlo random experiments to calculate optimal feature reduction number and conduct hyperspectral image classification with relevance vector machine.Experimental results show the reliability of the feature reduction number calculated by Monte Carlo method.Compared with the classification of original data,there is a significant improvement in the classification accuracy with the feature reduction data.
基于蒙特卡罗特征约简方法的高光谱图像分类
高光谱图像分类是高光谱数据分析的一个重要研究方向。相关性向量机(RVM)由于不受Mercer条件的限制,不需要设置惩罚因子而得到了广泛的应用。由于高光谱数据的高维数,在训练样本较少的情况下,分类精度会受到严重影响。特征约简是处理这种现象的常用方法。然而,大多数基于滤波模型的特征选择方法都不能提供最优的特征选择数。本文提出利用蒙特卡罗随机实验的统计估计特性,计算最优特征约简数,利用相关向量机进行高光谱图像分类。实验结果表明,蒙特卡罗方法计算的特征约简数是可靠的。与原始数据的分类相比,特征约简数据的分类准确率有明显提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.20
自引率
14.30%
发文量
4258
审稿时长
2.9 months
期刊介绍:
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信