A Skew-Gaussian‎ ‎Spatio-Temporal Process with Non-Stationary Correlation Structure

IF 0.1 Q4 STATISTICS & PROBABILITY
Zahra Barzegar, F. Rivaz, M. J. Khaledi
{"title":"A Skew-Gaussian‎ ‎Spatio-Temporal Process with Non-Stationary Correlation Structure","authors":"Zahra Barzegar, F. Rivaz, M. J. Khaledi","doi":"10.29252/JIRSS.18.2.63","DOIUrl":null,"url":null,"abstract":". This paper develops a new class of spatio-temporal process models that can simultaneously capture skewness and non-stationarity. The proposed approach which is based on using the closed skew-normal distribution in the low-rank representation of stochastic processes, has several favorable properties. In particular, it greatly reduces the dimension of the spatio-temporal latent variables and induces flexible correlation structures. Bayesian analysis of the model is implemented through a Gibbs MCMC algorithm which incorporates a version of the Kalman filtering algorithm. All fully conditional posterior distributions have closed forms which show another advanta-geous property of the proposed model. We demonstrate the e (cid:14) ciency of our model through an extensive simulation study and an application to a real data set comprised of precipitation measurements.","PeriodicalId":42965,"journal":{"name":"JIRSS-Journal of the Iranian Statistical Society","volume":"1 1","pages":""},"PeriodicalIF":0.1000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JIRSS-Journal of the Iranian Statistical Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.29252/JIRSS.18.2.63","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 1

Abstract

. This paper develops a new class of spatio-temporal process models that can simultaneously capture skewness and non-stationarity. The proposed approach which is based on using the closed skew-normal distribution in the low-rank representation of stochastic processes, has several favorable properties. In particular, it greatly reduces the dimension of the spatio-temporal latent variables and induces flexible correlation structures. Bayesian analysis of the model is implemented through a Gibbs MCMC algorithm which incorporates a version of the Kalman filtering algorithm. All fully conditional posterior distributions have closed forms which show another advanta-geous property of the proposed model. We demonstrate the e (cid:14) ciency of our model through an extensive simulation study and an application to a real data set comprised of precipitation measurements.
具有非平稳相关结构的偏高斯时空过程
。本文提出了一种能够同时捕捉偏态和非平稳性的时空过程模型。该方法基于在随机过程的低秩表示中使用封闭的偏态正态分布,具有几个有利的性质。特别是,它大大降低了时空潜变量的维数,并诱导出灵活的相关结构。模型的贝叶斯分析是通过吉布斯MCMC算法实现的,该算法结合了卡尔曼滤波算法的一个版本。所有完全条件后验分布都具有封闭形式,这显示了所提出模型的另一个优点。通过广泛的模拟研究和对由降水测量组成的真实数据集的应用,我们证明了我们的模型的e (cid:14)的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.50
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信