Yue Chen, Haitao Li, Lei Gao, Wei Xu, R. Lorenzo, M. Gaff
{"title":"A Review of Experimental Research on the Mode I Fracture Behavior of Bamboo","authors":"Yue Chen, Haitao Li, Lei Gao, Wei Xu, R. Lorenzo, M. Gaff","doi":"10.32604/jrm.2023.027634","DOIUrl":null,"url":null,"abstract":"Bamboo is an eco-friendly material with light weight, high strength, short growth cycle and high sustainability, which is widely used in building structures. Engineered bamboo has further promoted the development of modern bamboo structures due to its unrestricted size and shape. However, as a fi ber-reinforced material, fracture damage, especially Mode I fracture damage, becomes the most likely damage mode of its structure, so Mode I fracture characteristics are an important subject in the research of mechanical properties of bamboo. This paper summarizes the current status of experimental research on the Mode I fracture properties of bamboo based on the three-point bending (TPB) method, the single-edge notched beam (SENB) method, the compact tension (CT) method and the double cantilever beam (DCB) method, compares the fracture toughness of different species of bamboo, analyzes the toughening mechanisms and fracture damage modes, discusses the applicability of different theoretical calculation methods, and makes suggestions for future research priorities, aiming to provide a reference for future research and engineering applications in related fi elds.","PeriodicalId":16952,"journal":{"name":"Journal of Renewable Materials","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Renewable Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.32604/jrm.2023.027634","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Environmental Science","Score":null,"Total":0}
引用次数: 3
Abstract
Bamboo is an eco-friendly material with light weight, high strength, short growth cycle and high sustainability, which is widely used in building structures. Engineered bamboo has further promoted the development of modern bamboo structures due to its unrestricted size and shape. However, as a fi ber-reinforced material, fracture damage, especially Mode I fracture damage, becomes the most likely damage mode of its structure, so Mode I fracture characteristics are an important subject in the research of mechanical properties of bamboo. This paper summarizes the current status of experimental research on the Mode I fracture properties of bamboo based on the three-point bending (TPB) method, the single-edge notched beam (SENB) method, the compact tension (CT) method and the double cantilever beam (DCB) method, compares the fracture toughness of different species of bamboo, analyzes the toughening mechanisms and fracture damage modes, discusses the applicability of different theoretical calculation methods, and makes suggestions for future research priorities, aiming to provide a reference for future research and engineering applications in related fi elds.
期刊介绍:
This journal publishes high quality peer reviewed original research and review articles on macromolecules and additives obtained from renewable/biobased resources. Utilizing a multidisciplinary approach, JRM introduces cutting-edge research on biobased monomers, polymers, additives (both organic and inorganic), their blends and composites. JRM showcases both fundamental aspects and applications of renewable materials. The fundamental topics include the synthesis and polymerization of biobased monomers and macromonomers, the chemical modification of natural polymers, as well as the characterization, structure-property relationships, processing, recycling, bio and environmental degradation and life cycle analysis of the ensuing materials, in view of their potential applications. Within this sustainability approach, green chemistry processes and studies falling within biorefinery contexts are strongly favored.