Positive Solutions to System of Nonlinear Second-Order Three-Point Boundary Value Problem

J. Wang, Mingxia He
{"title":"Positive Solutions to System of Nonlinear Second-Order Three-Point Boundary Value Problem","authors":"J. Wang, Mingxia He","doi":"10.3724/SP.J.1160.2013.00265","DOIUrl":null,"url":null,"abstract":"In this paper, we investigate the following system of nonlinear second-order three-point boundary value problem 8 > > u 00 = f(t,v), t 2 (0,1), v 00 = g(t, u), t 2 (0,1), u(0) = �u(�), u(1) = �u(�), v(0) = �v(�), v(1) = �v(�), where � 2 (0,1) and 0 < � � � < 1. Green’s function for the associated linear boundary value problem is constructed, and several useful properties of the Green’s function are obtained. Existence and multiplicity criteria of positive solutions are established by using the well-known fixed point theorems of cone expansion and compression.","PeriodicalId":62008,"journal":{"name":"应用泛函分析学报","volume":"15 1","pages":"265"},"PeriodicalIF":0.0000,"publicationDate":"2013-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"应用泛函分析学报","FirstCategoryId":"1089","ListUrlMain":"https://doi.org/10.3724/SP.J.1160.2013.00265","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

In this paper, we investigate the following system of nonlinear second-order three-point boundary value problem 8 > > u 00 = f(t,v), t 2 (0,1), v 00 = g(t, u), t 2 (0,1), u(0) = �u(�), u(1) = �u(�), v(0) = �v(�), v(1) = �v(�), where � 2 (0,1) and 0 < � � � < 1. Green’s function for the associated linear boundary value problem is constructed, and several useful properties of the Green’s function are obtained. Existence and multiplicity criteria of positive solutions are established by using the well-known fixed point theorems of cone expansion and compression.
非线性二阶三点边值问题的正解
本文研究了非线性二阶三点边值问题8 > > u 00 = f(t,v), t 2 (0,1), v 00 = g(t, u), t 2 (0,1), u(0) = u(), u(1) = u(), v(0) = v(), v(1) = v(), v(1) = v(),其中2(0,1)和0 < < 1。构造了相关线性边值问题的格林函数,得到了格林函数的几个有用性质。利用圆锥展开和压缩的不动点定理,建立了正解的存在性和多重性准则。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
1224
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信