Solutions for Cauchy Problems of Composite Fractional Differential Equations

Wei Dongyi
{"title":"Solutions for Cauchy Problems of Composite Fractional Differential Equations","authors":"Wei Dongyi","doi":"10.3724/SP.J.1160.2013.00157","DOIUrl":null,"url":null,"abstract":"Firstly,we give some definitions and properties for the fractional integral and differential. Secondly,some errors in Refs[1]and[13]are corrected by Laplace transform and Hankel integral formula of T function,and general existence and nonexistence theorems of solutions are given.Finally,we obtain the explicit solution of the initial value problem for variable coefficients fractional differential equations with composite fractional derivative operator by Laplace transform and successive approximation method.","PeriodicalId":62008,"journal":{"name":"应用泛函分析学报","volume":"15 1","pages":"157"},"PeriodicalIF":0.0000,"publicationDate":"2013-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"应用泛函分析学报","FirstCategoryId":"1089","ListUrlMain":"https://doi.org/10.3724/SP.J.1160.2013.00157","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Firstly,we give some definitions and properties for the fractional integral and differential. Secondly,some errors in Refs[1]and[13]are corrected by Laplace transform and Hankel integral formula of T function,and general existence and nonexistence theorems of solutions are given.Finally,we obtain the explicit solution of the initial value problem for variable coefficients fractional differential equations with composite fractional derivative operator by Laplace transform and successive approximation method.
复合分数阶微分方程Cauchy问题的解
首先给出了分数阶积分和分数阶微分的一些定义和性质。其次,利用T函数的拉普拉斯变换和Hankel积分公式修正了参考文献[1]和[13]中的一些误差,并给出了解的一般存在性和不存在性定理。最后,利用拉普拉斯变换和逐次逼近方法,得到了一类含复合分数阶导数算子的变系数分数阶微分方程初值问题的显式解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
1224
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信