Survey of Magneto-tactic Properties of Escherichia coli Under Static Magnetic Fields

Q4 Environmental Science
G. Asgari, Ramin Khoshniyat, M. Moradi Golrokhi
{"title":"Survey of Magneto-tactic Properties of Escherichia coli Under Static Magnetic Fields","authors":"G. Asgari, Ramin Khoshniyat, M. Moradi Golrokhi","doi":"10.34172/AJEHE.2020.03","DOIUrl":null,"url":null,"abstract":"Some of the microorganisms such as Escherichia coli have the ability to migrate to areas in which the intensity of magnetic fields (MFs) is higher, which is called magnetotactic properties. Magnetotaxis is a process implemented by a group of gram-negative bacteria that involves orienting and coordinating movement in response to magnetic fields. This study was conducted to investigate these properties of Escherichia coli in laboratory conditions. By means of coated wires (30 rounds) placed in two parts of the reactor (with five zones and a volume of 250 mL) and direct current (DC), an intensity of 0.18 mT for 42 minutes has been prepared. The most probable number of E. coli per 100 mL (MPN/100 mL) in each zone of the reactor, before and after exposure, was estimated. According to the results of this study, E. coli has magnetotactic properties, and the mean density of these bacteria in higher MFs (0.18 mT) is higher compared to the other zones in the reactor.","PeriodicalId":8672,"journal":{"name":"Avicenna Journal of Environmental Health Engineering","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Avicenna Journal of Environmental Health Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.34172/AJEHE.2020.03","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Environmental Science","Score":null,"Total":0}
引用次数: 1

Abstract

Some of the microorganisms such as Escherichia coli have the ability to migrate to areas in which the intensity of magnetic fields (MFs) is higher, which is called magnetotactic properties. Magnetotaxis is a process implemented by a group of gram-negative bacteria that involves orienting and coordinating movement in response to magnetic fields. This study was conducted to investigate these properties of Escherichia coli in laboratory conditions. By means of coated wires (30 rounds) placed in two parts of the reactor (with five zones and a volume of 250 mL) and direct current (DC), an intensity of 0.18 mT for 42 minutes has been prepared. The most probable number of E. coli per 100 mL (MPN/100 mL) in each zone of the reactor, before and after exposure, was estimated. According to the results of this study, E. coli has magnetotactic properties, and the mean density of these bacteria in higher MFs (0.18 mT) is higher compared to the other zones in the reactor.
静态磁场下大肠杆菌趋磁特性的研究
有些微生物如大肠杆菌具有迁移到磁场强度较高的地区的能力,这被称为趋磁特性。趋磁是一组革兰氏阴性细菌在磁场作用下定向和协调运动的过程。本研究在实验室条件下对大肠杆菌的这些特性进行了研究。通过在反应器的两个部分(五个区域,体积为250毫升)和直流电(DC)中放置涂层导线(30轮),制备了0.18 mT的42分钟强度。估计暴露前后反应器各区域每100 mL大肠杆菌的最可能数量(MPN/100 mL)。根据本研究的结果,大肠杆菌具有趋磁特性,并且这些细菌在高MFs区域的平均密度(0.18 mT)高于反应器中其他区域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Avicenna Journal of Environmental Health Engineering
Avicenna Journal of Environmental Health Engineering Environmental Science-Health, Toxicology and Mutagenesis
CiteScore
1.00
自引率
0.00%
发文量
8
审稿时长
8 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信