{"title":"Design of Network Cascade Structure for Image Super-Resolution","authors":"Jianwei Zhang, Zhenxing Wang, Yuhui Zheng, Guoqing Zhang","doi":"10.32604/JNM.2021.018383","DOIUrl":null,"url":null,"abstract":": Image super resolution is an important field of computer research. The current mainstream image super-resolution technology is to use deep learning to mine the deeper features of the image, and then use it for image restoration. However, most of these models mentioned above only trained the images in a specific scale and do not consider the relationships between different scales of images. In order to utilize the information of images at different scales, we design a cascade network structure and cascaded super-resolution convolutional neural networks. This network contains three cascaded FSRCNNs. Due to each sub FSRCNN can process a specific scale image, our network can simultaneously exploit three scale images, and can also use the information of three different scales of images. Experiments on multiple datasets confirmed that the proposed network can achieve better performance for image SR.","PeriodicalId":69198,"journal":{"name":"新媒体杂志(英文)","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"新媒体杂志(英文)","FirstCategoryId":"1092","ListUrlMain":"https://doi.org/10.32604/JNM.2021.018383","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
: Image super resolution is an important field of computer research. The current mainstream image super-resolution technology is to use deep learning to mine the deeper features of the image, and then use it for image restoration. However, most of these models mentioned above only trained the images in a specific scale and do not consider the relationships between different scales of images. In order to utilize the information of images at different scales, we design a cascade network structure and cascaded super-resolution convolutional neural networks. This network contains three cascaded FSRCNNs. Due to each sub FSRCNN can process a specific scale image, our network can simultaneously exploit three scale images, and can also use the information of three different scales of images. Experiments on multiple datasets confirmed that the proposed network can achieve better performance for image SR.