Thermal radiation effect on Non-Newtonian Casson fluid through a porous material over a magnetic field with buoyancy

Q3 Engineering
Seun Oyinkansola Mate, Adebowale Martins Obalalu, Olusegun Adebayo Ajala, Toyibat Bamidele Bakare, Amos Wale Ogunsola, Akintayo Oladimeji Akindele
{"title":"Thermal radiation effect on Non-Newtonian Casson fluid through a porous material over a magnetic field with buoyancy","authors":"Seun Oyinkansola Mate, Adebowale Martins Obalalu, Olusegun Adebayo Ajala, Toyibat Bamidele Bakare, Amos Wale Ogunsola, Akintayo Oladimeji Akindele","doi":"10.36963/ijtst.2023100103","DOIUrl":null,"url":null,"abstract":"The magnetohydrodynamic (MHD) chemically reactive of Casson non-Newtonian nanofluid flow on a two-dimensional incompressible steady from stretched sheet in a porous quiescent medium with buoyancy effect is investigated numerically. Additional effects included in the originality of the model are the applied magnetic field and solar radiation effect. The Chebyshev collocation method (CCM) was used to solve the ordinary differential equations (ODEs) with MATHEMATICA 11.3 software. The present tables and graphs show the performance of fluid physical quantities, momentum flow, energy distribution, nanoparticle concentration, and velocity for various values of applicable dimensionless numbers. The numerical outcomes demonstrate the effect of different physical parameters of the fluid, and it was observed that the velocity profile increased as the thermal and mass Grashof number increased due to an increase in buoyant force caused by heat transferred from the vertical plate to the fluid but decreased as the Casson parameter increased due to a decrease in its yield stress, porosity, and magnetic parameter. Also Analyses reveal that the thermal profile reduce with an increase in variable thermal conductivity parameter. This study will be of considerable economic value to marine engineers, mechanical engineers, physicists, chemical engineers, and others since its application will help them improve their operations.","PeriodicalId":36637,"journal":{"name":"International Journal of Thermofluid Science and Technology","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Thermofluid Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.36963/ijtst.2023100103","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

The magnetohydrodynamic (MHD) chemically reactive of Casson non-Newtonian nanofluid flow on a two-dimensional incompressible steady from stretched sheet in a porous quiescent medium with buoyancy effect is investigated numerically. Additional effects included in the originality of the model are the applied magnetic field and solar radiation effect. The Chebyshev collocation method (CCM) was used to solve the ordinary differential equations (ODEs) with MATHEMATICA 11.3 software. The present tables and graphs show the performance of fluid physical quantities, momentum flow, energy distribution, nanoparticle concentration, and velocity for various values of applicable dimensionless numbers. The numerical outcomes demonstrate the effect of different physical parameters of the fluid, and it was observed that the velocity profile increased as the thermal and mass Grashof number increased due to an increase in buoyant force caused by heat transferred from the vertical plate to the fluid but decreased as the Casson parameter increased due to a decrease in its yield stress, porosity, and magnetic parameter. Also Analyses reveal that the thermal profile reduce with an increase in variable thermal conductivity parameter. This study will be of considerable economic value to marine engineers, mechanical engineers, physicists, chemical engineers, and others since its application will help them improve their operations.
非牛顿卡森流体在带浮力磁场上通过多孔材料的热辐射效应
用数值方法研究了卡森非牛顿纳米流体在具有浮力效应的多孔静态介质中从拉伸薄片出发在二维不可压缩定常面上流动的磁流体动力学化学反应。模型原创性中包含的附加效应是外加磁场和太阳辐射效应。采用Chebyshev配置法(CCM),利用MATHEMATICA 11.3软件求解常微分方程(ode)。本表格和图表显示了流体物理量、动量流、能量分布、纳米颗粒浓度和速度在不同适用量纲数值下的表现。数值结果显示了流体不同物理参数的影响,由于垂直板向流体传递热量引起浮力的增加,热格拉什夫数和质量格拉什夫数增加,速度剖面增加,但由于屈服应力、孔隙度和磁性参数的降低,卡森参数增加,速度剖面减小。分析还表明,随着变导热系数参数的增大,热廓线减小。这项研究将对船舶工程师、机械工程师、物理学家、化学工程师和其他人员具有相当大的经济价值,因为它的应用将帮助他们改进他们的操作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
14
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信